faculty

Tenure-Track Position, Starting Fall 2017

GRINNELL COLLEGE – COMPUTER SCIENCE (AREA OPEN) - TENURE-TRACK POSITION (START FALL 2017).

GRINNELL COLLEGE. The Department of Computer Science invites applications for a tenure-track appointment beginning Fall 2017. Assistant Professor (Ph.D.) preferred; Instructor (ABD) or Associate Professor possible. Research and teaching interests might include, but are not limited to, theory, algorithms, systems, AI, HCI, software engineering, programming languages, CS education, data science, security, databases, graphics, parallel and distributed computing, accessibility technology, or social and ethical issues in computing.

Grinnell College is a highly selective undergraduate liberal arts college with a strong tradition of social responsibility. In letters of application, candidates should discuss their potential to contribute to a college community that maintains a diversity of people and perspectives as one of its core values. Review of applications will begin on October 21, 2016. Please visit our department website at http://www.cs.grinnell.edu and our application website at https://jobs.grinnell.edu/postings/1691 to find more details about the job and submit applications online. Candidates will need to upload a letter of application, curriculum vitae, transcripts (copies are acceptable), a teaching statement, a description of scholarly activities, and a statement about ways in which they can support diversity in the department, the College, and the discipline. Candidates must also provide email addresses for three references. Questions about this search should be directed to the search chair, Professor Samuel A. Rebelsky, at [CSSearch@grinnell.edu] or 641-269-3169.

Grinnell College is committed to providing a safe and inclusive educational and work environment for all College community members, and does not discriminate on the basis of race, color, ethnicity, national origin, age, sex, gender, sexual orientation, gender identity or expression, marital status, veteran status, religion, disability, creed, or any other protected class.

Further information is available at http://www.cs.grinnell.edu/prospective-faculty/overview.

Computer Science Department Activities, Projects, and Responsibilities (2016-17)

The computer science faculty actively engage in activities and projects within Grinnell College, the Science Division, the department, and other areas. This page serves as a reference and contact list for many of these activities. Since all faculty are actively engaged in teaching, this page does not include specific activities related to classes, course development, or other aspects of teaching.
  • Contact the relevant faculty member if you have questions or comments regarding any of these activities.
  • Contact the department chair if you have questions about the department, organizational matters, or other areas not covered in this listing.
College Level Science Division Level Department Level Special Tasks Previous Versions

Computer Science Department Activities, Projects, and Responsibilities (2015-16)

The computer science faculty actively engage in activities and projects within Grinnell College, the Science Division, the department, and other areas. This page serves as a reference and contact list for many of these activities. Since all faculty are actively engaged in teaching, this page does not include specific activities related to classes, course development, or other aspects of teaching.

  • Contact the relevant faculty member if you have questions or comments regarding any of these activities.
  • Contact the department chair if you have questions about the department, organizational matters, or other areas not covered in this listing.

College Level

Science Division Level

Department Level

  • Department Chair: Samuel A. Rebelsky
    • Supervision of departmental assistant(s) and ASAs
    • Development of faculty-staff teaching assignment
    • Creation of class schedules
    • Supervision of graduation breakfast (with Science Secretaries)
    • Faculty recruiting
    • Promotion, tenure, contract renewal reviews
    • Merit reviews
    • Regular meetings with Student Educational Policy Committee (SEPC)
    • Paperwork from Dean's office
    • Faculty mentoring
    • College catalog entry
    • Review transfer credit requests
    • Budget
  • AIT Program in Budapest: TBD
    • Coordinate with Budapest program
    • Advise students on courses
  • Assessment Coordinator: Peter-Michael Osera
    • Reminders regarding exit interviews
    • Identification, posting of learning outcomes
    • Coordination with the College's Office of Analytic Support and Institutional Research (OASIR) and Center for Teaching Learning and Assessment (CTLA)
  • Communications Liaison: John David Stone, Henry M. Walker
  • Computer Science Museum: Henry M. Walker
  • Computer Science Commons: ASA
    • Make sure there's water in the coffee pot.
    • Straighten.
    • Contact SEPC when the dishes are not being washed.
  • Computer Science Table: Peter-Michael Osera and Charlie Curtsinger
    • Pick readings
    • Advertise (coordinate with ASA)
    • Lead discussions
  • Diversity Initiatives:
    • Grace Hopper Celebration of Women in Computing: Samuel A. Rebelsky, many faculty contribute
    • Richard Tapia Celebration of of Diversity in Computing: Samuel A. Rebelsky, many faculty contribute
  • Picnic (coordinated with the Department of Mathematics and Statistics): Jerod Weinman
  • Placement of Incoming Students: Samuel Rebelsky, Henry M. Walker
  • Pledge of the Computing Professional: John David Stone
  • Senior Lunch and Awards: Samuel Rebelsky
  • Social Media Liaisons: varies according to activity
  • Study Abroad in CS: TBD
    • Maintain list of study-abroad programs relevant to CS
    • Maintain list of course equivalents in those programs
    • Advise students on study-abroad options
    • Coordinate with Off-campus Study office
  • Supervision of Peer Educators (Mentors, Lab Assistants, Tutors): Jerod Weinman (Fall), TBD (Spring)
    • Train mentors, lab assistants, individual tutors
    • Prepare lists of responsibilities for peer educators
    • Prepare picture list of peer educators
    • Recruit students for peer-educator positions
    • Interview prospective peer educators
    • Work with faculty to assign peer mentors to classes
    • Prepare schedule of evening tutors
    • Assign individual and small-group tutors to students
    • Read and respond to reports from individual tutors, evening tutors, and mentor sessions
    • Gather data on usage of peer educators
  • Thursday Extras John David Stone
  • Web Site: John David Stone leads, all CS faculty contribute

Special Tasks

Previous Versions

Tenure Track Position, Starting Fall 2015

The department is looking for a new faculty member who shares our passions for teaching, scholarship, and mentoring students. Further information can be found at http://www.cs.grinnell.edu/prospective-faculty/tenure-track-2014-ad and http://www.cs.grinnell.edu/prospective-faculty/overview. Materials should be submitted by November 8, 2014.

Tenure-Track Position, Starting Fall 2015

The Computer Science Department will be hiring a new tenure-track faculty member to start in Fall 2015. The official job posting appears below. If you explore our department, you'll find that Grinnell's CS department is an energetic and exciting place where we balance and connect our teaching and scholarship.

If you have questions about the position, please send them to CSSearch@grinnell.edu. You may also want to look at recent questions and answers.

GRINNELL COLLEGE – DEPARTMENT OF COMPUTER SCIENCE (AREA OPEN) – TENURE-TRACK POSITION (START FALL 2015)

GRINNELL COLLEGE. Tenure-track position in the Department of Computer Science, starting Fall 2015. Assistant Professor (Ph.D.) preferred; Instructor (ABD) or Associate Professor possible. Area open; possibilities include, but are not limited to, systems, theory, algorithms, AI, HCI, software engineering, programming languages, CS education, data science, databases, graphics, parallel and distributed computing, or social and ethical issues in computing. Grinnell College is a highly selective undergraduate liberal arts college. The College's curriculum is founded on a strong advising system and close student-faculty interaction, with few college-wide requirements beyond the completion of a major. The department of computer science prides itself on an innovative, internationally recognized curriculum that includes a multi-paradigm introductory sequence, encourages faculty-student research, and emphasizes workshop-style learning. Further information is available at: http://www.cs.grinnell.edu. The teaching schedule of five courses over two semesters will include introductory, mid-level, and advanced courses; every few years one course will be Tutorial (a writing/critical thinking course for first-year students, oriented toward a special topic of the instructor's choice).

In letters of application, candidates should discuss their interest in developing as a teacher and scholar in an undergraduate liberal arts college that emphasizes close student-faculty interaction. They should also discuss how they might contribute to a college community that has diversity—of people, personal and educational experiences, and disciplinary perspectives—as one of its core values. To be assured of full consideration, all application materials should be received by November 8, 2014.

Please submit applications online by visiting our application website at https://jobs.grinnell.edu. Candidates will need to upload a letter of application, curriculum vitae, transcripts (copies are acceptable), a teaching statement, and a description of scholarly activities, and provide email addresses for three references. Questions about this search should be directed to the search chair, Professor Samuel A. Rebelsky, at [CSSearch@grinnell.edu] or 641-269-3169.

Grinnell College is committed to establishing and maintaining a safe and nondiscriminatory educational environment for all College community members. It is committed to a policy of nondiscrimination in matters of admission, employment, and housing, and in access to and participation in its education programs, services, and activities. The College does not discriminate on the basis of race, color, ethnicity, national origin, age, sex, gender, sexual orientation, gender identity or expression, marital status, veteran status, religion, physical or mental disability, creed, or any other protected class.

Computer Science Department Activities, Projects, and Responsiblities (2013-14)

This archival page has been superseded by a more recent list of tasks and responsibilities.

The computer science faculty actively engage in activities and projects within Grinnell College, the Science Division, the department, and other areas. This page serves as a reference and contact list for many of these activities. Since all faculty are actively engaged in teaching, this page does not include specific activities related to classes, course development, or other aspects of teaching.

  • Contact the relevant faculty member if you have questions or comments regarding any of these activities.
  • Contact the department chair if you have questions about the department, organizational matters, or other areas not covered in this listing.

College Level

Science Division Level

Department Level

  • Department Chair: Henry M. Walker
    • Supervision of departmental assistant(s)
    • Development of faculty-staff teaching assignment
    • Creation of class schedules
    • Supervision of graduation breakfast (with Science Secretaries)
    • Promotion, tenure, contract renewal reviews
    • Merit reviews
  • CS Assessment Coordination: Henry M. Walker
    • Reminders regarding exit interviews
    • Identification, posting of learning outcomes
    • Coordination with the College's Office of Analytic Support and Institutional Research (OASIR)
  • Department Web Site: John David Stone leads, all CS faculty contribute
  • Communications Liaison: John David Stone, Henry M. Walker
  • Computer Science Museum: Henry M. Walker
  • Computer Science Table: Samuel Rebelsky
  • Diversity Initiatives:
    • Grace Hopper Celebration of Women in Computing: Janet Davis
    • Richard Tapia Celebration of of Diversity in Computing: shared interest
  • Picnic (coordinated with the Department of Mathematics and Statistics): Jerod Weinman
  • Placement of Incoming Students: Samuel Rebelsky, Henry M. Walker
  • Pledge of Computing Professionals: Janet Davis
  • Senior Lunch and Awards: Samuel Rebelsky
  • Social Media Liaisons: varies according to activity
  • Study Abroad in Budapest: Janet Davis
  • Supervision of Mentors, Lab Assistants Jerod Weinman
  • Thursday Extras: John David Stone

Faculty scholarship expectations

endorsed by the Department of Mathematics and Computer Science on October 11, 2004


Note (July 13, 2006): The following document was developed jointly by the computer science faculty and the mathematics faculty when both were part of a single Department of Mathematics and Computer Science. With the restructuring into two departments on July 1, 2006, the administrative structure has changed, but the principles regarding scholarly expectations continue for both departments.


The Department of Mathematics and Computer Science believes its faculty should be interested and involved scholars. Since the Department celebrates the diversity of scholarship by its faculty, the Department believes it must not be overly prescriptive in stating just what might or might not be adequate and appropriate regarding professional involvement. Rather, the Department identifies three general principles for the scholarly activity of its faculty.

  1. Faculty should be able to provide evidence that they are working in their field(s) as engaged scholars.

  2. The Department endorses a wide range of scholarly activities as being appropriate and worthwhile.

  3. Faculty efforts should include activities of scholarship that are peer reviewed.

Engaged Scholars: In mathematics, statistics, and computer science, important new questions are always arising for scholars to address. Also, important old questions may gain new relevance and be amenable to new insights and methods. Further, engaged faculty provide important role models to students regarding the intellectual excitement and challenge of their fields. We believe that, to be effective over the long term, faculty must continually be engaged in their changing and expanding disciplines.

Scholarly Activities: The Department strongly endorses the breadth of scholarship identified in E. L. Boyer's report [1]. That is, we believe that appropriate scholarly activity includes the scholarship of discovery, the scholarship of integration, the scholarship of application, and the scholarship of teaching.

Peer Review: Faculty should have the products of their scholarship tested and refined through interactions. While some activities might not be peer reviewed, the Department uses peer review as a measure to ensure scholarly endeavors meet high standards of rigor and quality.

Discussion and Examples

Although these three principles provide some guidance regarding appropriate scholarly activity, abstract statements sometimes can be difficult to interpret and apply. Thus, the Department offers several examples to help clarify appropriate endeavors. We emphasize, however, that these examples are not comprehensive or complete. Rather, they are meant only to suggest the type of activities that the Department believes fit well within the principles stated.

Faculty as Engaged Scholars

Scholarly engagement normally involves such qualities as focus, intellectual development, and creativity. A scholar expands her or his background in a subject, develops new perspectives, integrates new ideas with past understandings, organizes, and synthesizes. The form in which this engagement is manifested has several models:

  • A traditional approach to scholarly engagement involves focus on a research project. Intellectual development comes from learning new developments in the field, and creativity yields insights for expanding the field's body of knowledge.

  • Scholarly engagement may emphasize integration, organization, and synthesis -- perhaps leading to a textbook, lab manual, survey article or edited anthology. In this context, focus involves putting pieces together; intellectual development includes the restructuring and synthesis of ideas; and creativity yields new perspectives and structures.

  • Scholarly engagement may involve the creation of software, multimedia, or other materials to support research or in the development of learning materials. Such activity draws heavily on multiple disciplines, focusing on new ideas, viewpoints, techniques, and relationships.

  • Often a faculty member provides her or his own direction and scholarly focus, but other models are possible and appropriate. Here are two examples.

    • A faculty member with broad experience may be asked by others to consult regularly. In these circumstances, the outsiders provide an on-going series of scholarly problems. Sometimes the faculty member might draw largely upon past experience, with only marginal scholarly engagement. In other cases, however, the consultant may need to learn new areas, integrate ideas, and play a leading role in part of the research. This may lead to considerable intellectual development and creative problem solving.

    • A faculty member may develop extensive professional contacts over time, and discussions with these colleagues may yield an on-going stream of scholarly activity. The focus of work may depend in part on the interests of the other colleagues, but the collaborative investigations may yield significant scholarly development for all involved, and the interactions may spark considerable creativity.

In any form, scholarly engagement requires active involvement, not just passive observation. Although faculty are encouraged to attend conferences for exposure to new ideas, simple attendance does not guarantee active involvement. To demonstrate full engagement, faculty attendance at conferences should include active participation -- at least periodically.

Whatever the nature of the scholarly activity, the scholarship should show evidence of clear goals, adequate preparation, appropriate methods, significant results, effective presentation, and reflective critique. Altogether, a faculty member should be active within the discipline, using appropriate methodology, creativity, and focused intellect.

The Range of Appropriate Scholarly Activities

With the breadth of scholarship identified by Boyer, this department wishes to be particularly cautious in listing what scholarly activities might be appropriate. We have chosen here simply to list, with annotations, some relevant contributions made in the past by department members. These examples are meant to illustrate, not limit, the range of appropriate activities. The length of the list is not intended to suggest that each individual ought to engage in more than a few such activities, and the ordering of the list is not intended to indicate any inherent preference or value for one type of scholarship over another.

  • article in a research journal: This represents the most traditional mechanism for organizing and presenting new work in a subject area. Publication may be in paper or electronic journals.

  • article in a teaching journal: Although some educational articles may be descriptive and informal, opportunities abound for innovative experimentation, careful methodology, and formal analysis.

  • article in a conference proceedings: In some disciplines, the preferred mechanism for publishing scholarship is through a conference proceedings. This allows for quick dissemination of written results within the focused community of a conference.

  • conference and colloquium talks: The practice of presenting one's scholarship to an audience allows for a sharing of ideas in an environment of intellectual energy and immediate feedback. Examples span the range from informal, relaxed discussions to reviewed, formal presentations. Invited presentations are particularly noteworthy.

  • panel talks: When presentations involve several participants, the level of scholarship for the participant may be difficult to judge. The effort of the session organizer, for example, may be much greater than that of the panelists. Involvement with invited sessions may suggest heightened effort and scholarship.

  • workshops: Many conferences hold extended sessions that provide conference attendees new insights in emerging research and technology. Session leaders must synthesize much new material and present it within a highly-constrained framework.

  • consultations: Some faculty work regularly with those in other departments. This provides an interdisciplinary perspective on scholarly endeavors.

  • student-faculty research, perhaps leading to a published paper or presentation: Mentored Advanced Projects (MAPs) and guided independent projects involve mentoring of students while moving research along. Progress often is slow, as faculty expend considerable energy and time in bringing students up to speed.

  • professional boards: Programs and policies only make sense if they fit with perspectives and understandings in the discipline. Thus, involvement in national committees and policy boards requires participants to draw upon a broad understanding of their disciplines.

  • posters provide a fine mechanism for getting feedback on interim results. These can be particularly relevant to projects involving student-faculty research.

  • books: Published books may have a research focus or may synthesize material yielding a textbook or laboratory manual. Either emphasis is appropriate in this department.

  • software development: The development of large software packages and applications draws upon a deep knowledge of the application field, extensive problem solving, thoughtful design, integration of algorithms and data structures, and the innovative integration of ideas.

  • development of teaching materials: Considerable scholarly activity can be involved in the development of an extensive package of audio, video, and/or paper-based teaching materials. (We do not regard the routine preparation of class handouts as a significant scholarly activity.)

  • posing or solving published problems: Much of mathematics, statistics, and computer science relates to the on-going identification and solution of interesting problems. Often this work may occur informally, such as the work of the faculty to find solutions to problems posed in the annual Putnam Mathematical Examination. Sometimes, however, this activity may become rather formal and systematic. For example, the American Mathematical Monthly solicits statements of interesting problems, identifies those who have submitted correct solutions, and publishes the best results.

  • refereeing papers and proposals: Many journals, conferences, and granting agencies invite faculty to review submitted materials -- either individually or in groups. A serious referee's report requires thoughtful consideration of new material.

Peer Reviewed Activities

Peer review offers the broadest accepted mechanism for ensuring the approval by an intellectual community of a faculty member's scholarship. While some of a faculty member's scholarly output may not be peer-reviewed, having one's work reviewed by one's peers provides a convincing means of assessing the scholarship's value. Several examples of types of peer review follow.

  • Many fields within pure mathematics follow a traditional process, in which refereed journals provide the primary forum for scholarly materials. This format is consistent with practice in many other academic disciplines.

  • Within computer science, peer-reviewed presentations provide the preferred mechanism to disseminate scholarly results. The best conferences, for example, are extremely selective, often accepting only 25%-35% of the papers submitted. Unlike many disciplines, the field of computer science changes so quickly that conferences provide the primary forum for the communication of many results; books and other monographs simply take too long to appear. This is described more fully in ``Best Practices Memo. Evaluating Computer Scientists and Engineers For Promotion and Tenure'' [2], which describes practices for both theorists and experimentalists:

    For theorists, ``conference publication is highly regarded in the theoretical community'', although results are often rewritten for other journals (following other disciplines to some extent). The CRA Memo continues, ``For experimentalists conference publication is preferred to journal publication, and the premier conferences are generally more selective than the premier journals [...]. In these and other ways experimental research is at variance with conventional academic publication traditions.''
  • Within statistics, the review of statistical consulting may occur in several ways. The American Statistical Association explains possible review and assessment with the following statement (see [3]):

    Mathematical sciences departments should also recognize the value of statistical consulting as a legitimate and important form of scholarship and professional development. This can involve:

    • consulting on projects that may lead to joint authorship on peer-reviewed publications
    • consulting on scholarly projects even if joint authorship is not attained
    • consulting on student research projects
    • consulting on commercial projects that may involve proprietary information that precludes peer-reviewed publication

    The first of these can be evaluated by the usual peer-reviewed means, although the department should recognize that the journal may be in the applied discipline rather than in statistics. Such consulting would not likely result in sole- or first-authorship but can nevertheless be very valuable. The second and third of these can be assessed through testimony of the scholars and faculty members for whom the statistician performed the consulting. The fourth of these can be evaluated through testimony of the client.

  • Rather than publishing shorter peer-reviewed pieces, some faculty members will work on large-scale projects which yield books put out by established publishers. Any reputable press will pass a book through an imposing review process before a contract is agreed upon, followed by extensive editorial work. Such practice rises to the level of peer-review.

  • In several disciplinary areas, granting bodies, such as the National Science Foundation, utilize an extensive and rigorous peer review process, with acceptance rates of approximately 25%.

Practices differ in various sub-disciplines of mathematics, statistics, and computer science regarding preferred venues for the dissemination and publication of scholarly materials. No faculty member, however, is necessarily tied to a specific form of peer review. While peer-reviewed work is certainly expected, an holistic view which incorporates all of one's scholarly activities, including those which overlap with teaching and service, is employed. Consultation with the department chair and the Dean is recommended to address individual questions as to whether the quantity and quality of one's scholarly activity are sufficient for personnel decisions.

Select Bibliography

  1. E. L. Boyer, Scholarship Reconsidered: Priorities of the Professoriate, a report for the Carnegie Foundation for the Advancement of Teaching, 1990.
  2. D. Patterson, L. Snyder, and J. Ullman, "Best Practices Memo. Evaluating Computer Scientists and Engineers For Promotion and Tenure", Computing Research Association, 1999.
  3. American Statistical Association endorsement of the Mathematical Association of America "Guidelines for Programs and Departments in Undergraduate Mathematical Sciences." (undated web page)

People

Faculty
a roster of the department's current faculty
Graduates
lists of graduates in computer science, by class year
Majors
lists of current majors, by class year
Grinnell College directory search

Faculty

Charlie Curtsinger, Assistant Professor
B.S., University of Minnesota; M.S., Ph.D., University of Massachusetts Amherst

Peter-Michael Osera, Assistant Professor
B.S., B.A., University of Washington; Ph.D., University of Pennsylvania

Samuel A. Rebelsky, Professor and Chair
S.B., S.M., Ph.D., University of Chicago

John David Stone, Lecturer
B.A., University of Chicago; Ph.D., University of Texas at Austin

Henry M. Walker, Professor
Samuel R. and Marie-Louise Rosenthal Professor of Natural Science and Mathematics
B.A., Williams College; M.S., University of Iowa; Ph.D., Massachusetts Institute of Technology

Jerod Weinman, Assistant Professor
B.S., Rose-Hulman Institute of Technology; M.S., Ph.D., University of Massachusetts, Amherst

Syndicate content