Graphs

Weiss, from the beginning of chapter 14 through section 14.1 (pages 527–539)
Graph

• Applications
 – Airline routes
 – Computer networks
 – Course prerequisite

https://courses.cs.washington.edu/courses/cse373/12sp/lectures/05-11-graphs/19-graphs.pdf
Graph (cont.)

• A data structure that contains
 – Set of vertices V
 – Set of edges E
 – (v, w) is an edge that connects v and w

• Represent graph as $G = (V, E)$
 – $V = \{ V0, V1, V2, V3 \}$
 – $E = \{ (V0, V1), (V0, V2), (V1, V2), (V2, V3) \}$
 – $|V| = 4$, $|E| = 4$
Graph (cont.)

• Path is a sequence of connected vertices
 – Path from V0 to V3 is { V0, V2, V3 }
 – Path length is the number of edges (2)

• Undirected graphs: Edge (V0, V2) implies (V2, V0)

• Weighted graphs
 – An edge has a weight (cost)
 – E.g., distance of flight between two airports

• Directed graphs
 – Edges (V0, V2) and (V2, V0) have different weights.

• Cycle is a path from a vertex to itself
 – E.g., {V0, V2, V0}

• Best path from V0 to V3
 – The fewest number of edges
 – Sum of edge weights is minimum
Graph Representation

• Adjacency matrix

<table>
<thead>
<tr>
<th></th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>INF</td>
<td>4</td>
<td>10</td>
<td>INF</td>
</tr>
<tr>
<td>1</td>
<td>INF</td>
<td>INF</td>
<td>5</td>
<td>INF</td>
</tr>
<tr>
<td>2</td>
<td>INF</td>
<td>INF</td>
<td>INF</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>INF</td>
<td>INF</td>
<td>INF</td>
<td>INF</td>
</tr>
</tbody>
</table>

$O(|V|^2)$ time and space

• Adjacency list

0 1, 4 ➔ 2, 10 .
1 2, 5 .
2 3, 2 .
3

$O(|V| + |E|)$ time and space
Weiss Implementation

- Two components
 - Vertex object
 - Vertex map

<table>
<thead>
<tr>
<th>dist</th>
<th>prev</th>
<th>name</th>
<th>adj</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>V1</td>
<td>V2</td>
<td></td>
</tr>
</tbody>
</table>

- name: vertex name V2
- adj: adjacency list (V2, V3)
- dist: cost of the shortest path from the source vertex \{V0, V1, V2\}
- prev: vertex that is connected to this vertex on the shortest path V1

Start vertex

V0

V1 - V2

V3

V0 - V2

V0 - V1

V0 - V3

Input file

<table>
<thead>
<tr>
<th>V0</th>
<th>V1</th>
<th>V2</th>
<th>V3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>2</td>
<td>10</td>
</tr>
</tbody>
</table>

- V2
 - dist: 9
 - prev: V1

- V3
 - dist: 11

- V1
 - dist: 4
 - prev: V0

- V0
 - dist: 0
Breadth-First Graph Traversal

Weiss, section 14.2 (pages 539–545)
Shortest-Path Algorithms

• Shortest in terms of time, distance, cost, ...

• Applications
 – Map navigators
 – Flight reservation

• Problem definition
 – Input: weighted directed graph, where each edge (V_i, V_j) has a cost $c_{i,j}$
 – Cost of path V_1 to V_N is $\sum_{i=1}^{N-1} c_{i,i+1}$.
 – In the unweighted graph, the cost of all edges is 1.
 – Path length is N-1.
Unweighted Shortest Paths

• Find the shortest path (path with the fewest edges) from a start vertex to every vertex
• Use Breadth-First Search (BFS)
• For each vertex, determine
 – Whether it is visited
 – Its distance from the start vertex
 – Its previous vertex on the shortest path to this vertex
Vertex visited dist prev

<table>
<thead>
<tr>
<th>Vertex</th>
<th>visited</th>
<th>dist</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>T</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V2</td>
<td>F</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V3</td>
<td>T</td>
<td>0</td>
<td>null</td>
</tr>
<tr>
<td>V4</td>
<td>F</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V5</td>
<td>F</td>
<td>INF</td>
<td>null</td>
</tr>
<tr>
<td>V6</td>
<td>F</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V7</td>
<td>F</td>
<td>INF</td>
<td>null</td>
</tr>
</tbody>
</table>

Running time: $O(|E|)$

Vertex visited dist prev

<table>
<thead>
<tr>
<th>Vertex</th>
<th>visited</th>
<th>dist</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>F</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V2</td>
<td>F</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V3</td>
<td>T</td>
<td>0</td>
<td>null</td>
</tr>
<tr>
<td>V4</td>
<td>F</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V5</td>
<td>F</td>
<td>INF</td>
<td>null</td>
</tr>
<tr>
<td>V6</td>
<td>F</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V7</td>
<td>F</td>
<td>INF</td>
<td>null</td>
</tr>
</tbody>
</table>

V1 removed, V2 & V4 added

<table>
<thead>
<tr>
<th>Vertex</th>
<th>visited</th>
<th>dist</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>T</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V2</td>
<td>F</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V3</td>
<td>T</td>
<td>0</td>
<td>null</td>
</tr>
<tr>
<td>V4</td>
<td>F</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V5</td>
<td>F</td>
<td>INF</td>
<td>null</td>
</tr>
<tr>
<td>V6</td>
<td>F</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V7</td>
<td>F</td>
<td>INF</td>
<td>null</td>
</tr>
</tbody>
</table>

V6 removed

<table>
<thead>
<tr>
<th>Vertex</th>
<th>visited</th>
<th>dist</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>T</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V2</td>
<td>T</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V3</td>
<td>T</td>
<td>0</td>
<td>null</td>
</tr>
<tr>
<td>V4</td>
<td>F</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V5</td>
<td>F</td>
<td>3</td>
<td>V2</td>
</tr>
<tr>
<td>V6</td>
<td>T</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V7</td>
<td>F</td>
<td>INF</td>
<td>null</td>
</tr>
</tbody>
</table>

V2 removed, V5 added

<table>
<thead>
<tr>
<th>Vertex</th>
<th>visited</th>
<th>dist</th>
<th>prev</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1</td>
<td>T</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V2</td>
<td>T</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V3</td>
<td>T</td>
<td>0</td>
<td>null</td>
</tr>
<tr>
<td>V4</td>
<td>F</td>
<td>2</td>
<td>V1</td>
</tr>
<tr>
<td>V5</td>
<td>F</td>
<td>3</td>
<td>V2</td>
</tr>
<tr>
<td>V6</td>
<td>T</td>
<td>1</td>
<td>V3</td>
</tr>
<tr>
<td>V7</td>
<td>F</td>
<td>INF</td>
<td>null</td>
</tr>
</tbody>
</table>
Dijkstra’s Algorithm

Weiss, section 14.3 (pages 545–552)
Weighted Shortest Paths

- Dijkstra’s algorithm
- Use priority queue to store unvisited vertices
 - Remove a vertex v
 - For each vertex w that is adjacent to v
 - Find out whether v offers a shorter distance for w. If so, update w’s distance and add it to the priority queue.
 - When a vertex is removed, its distance is already at minimum.
There are, as many as $|E|$ insertions and deletions. Running time is $O(|E| \log |E|)$.

```java
class Path {
    Vertex dest;
    double dist;
}

while( priority queue not empty) {
    // remove a Path object
    // from the priority queue
    // check whether the vertex
    // of this Path object is
    // already processed.
    ...
}
```

There are, as many as $|E|$ insertions and deletions. Running time is $O(|E| \log |E|)$.

Bellman-Ford Algorithm

Weiss, section 14.4 (pages 552–554)
Negative-Weighted Shortest Paths

• Edge weights may be negative.
• Dijkstra’s algorithm may give incorrect shortest distance for a visited vertex
• The cost of path from $S \rightarrow u \rightarrow v$ may be shorter than $S \rightarrow v$.
• Bellman-Ford algorithm
 – Need to add v to queue and re-visit it

$\text{v.dist} < \text{u.dist}$

$\text{c}_{uv} < 0$
Negative-Weighted Shortest Paths

- Negative-cost cycle
 - The cost of the shortest path is undefined.

- Detect the negative-cost cycle with *scratch* variable
 - Increment *scratch* every time that a vertex is added and removed from queue
 - scratch/2 is the number of times that the vertex is removed
 - For a graph without cycles, scratch/2 ≤ |V| - 1.
Topological Sorting

Weiss, section 14.5 (pages 555–562)
Weighted Shortest Paths for Acyclic Graph

- Acyclic graph has no cycle.
 - No cycle with negative cost
- Topological sorting
 - Order vertices of a directed acyclic graph such that for \((u, v) \in E\) \(u\) appears before \(v\) in the ordering

Topological order: \(v_1, v_2, v_5, v_4, v_3, v_7, v_6\)
Example: order of courses taken at colleges
Weighted Shortest Paths for Acyclic Graph (cont.)

- Algorithm for topological ordering
 - Find a vertex v with no incoming edges
 - Print the vertex v
 - Remove the edges from the vertex v
 - For a vertex w adjacent to v, decrement the number of incoming edges for vertices adjacent to vertex v

<table>
<thead>
<tr>
<th>Vertex</th>
<th>Indegree of vertices before removing from queue</th>
</tr>
</thead>
<tbody>
<tr>
<td>v_1</td>
<td>0 0 0 0 0 0 0</td>
</tr>
<tr>
<td>v_2</td>
<td>1 0 0 0 0 0 0</td>
</tr>
<tr>
<td>v_3</td>
<td>2 1 1 1 0 0 0</td>
</tr>
<tr>
<td>v_4</td>
<td>3 2 1 0 0 0 0</td>
</tr>
<tr>
<td>v_5</td>
<td>1 1 0 0 0 0 0</td>
</tr>
<tr>
<td>v_6</td>
<td>3 3 3 3 2 1 0</td>
</tr>
<tr>
<td>v_7</td>
<td>2 2 2 1 0 0 0</td>
</tr>
</tbody>
</table>

add v_1 v_2 v_5 v_4 v_3, v_7 v_6
remove v_1 v_2 v_5 v_4 v_3 v_7 v_6
Weighted Shortest Paths for Acyclic Graph (cont.)

- Use topological ordering to find the shortest path
Weighted Shortest Paths for Acyclic Graph (cont.)

- Use topological ordering to find the shortest path
Weighted Shortest Paths for Acyclic Graph (cont.)

• Use topological ordering to find the shortest path
Weighted Shortest Paths for Acyclic Graph (cont.)

• Use topological ordering to find the shortest path
Weighted Shortest Paths for Acyclic Graph (cont.)

• Use topological ordering to find the shortest path
Weighted Shortest Paths for Acyclic Graph (cont.)

- Use topological ordering to find the shortest path
Weighted Shortest Paths for Acyclic Graph (cont.)

• Use topological ordering to find the shortest path