Problem 1

Recall that we use $\mathbb{N} = \{1, 2, 3, \ldots\}$ to denote the set of natural numbers. For $a, b \in \mathbb{N}$, we say a divides b, and we write $a|b$, if b can be divided by a with no remainder. For $a \in \mathbb{N}$, we also define the set

$$a|\mathbb{N} = \{ b \in \mathbb{N} \mid a|b \}.$$

Prove that $12|\mathbb{N} \subseteq 3|\mathbb{N}$.

Problem 2

Recall that a function $f : A \to B$ is one to one if and only if the following holds: for all $x, y \in A$, if $f(x) = f(y)$, then $x = y$. We also say that f is onto if and only if the following holds: for all $y \in B$, there exists an $x \in A$ such that $f(x) = y$.

Give an example of a function $f : \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ that is onto but is not one to one.

Problem 3

Use induction to prove that for all $n \in \mathbb{N}$,

$$1 + 3 + 5 + \cdots + 2n - 1 = n^2.$$

Problem 4

For each part below, give an example of a relation with the corresponding properties.

a) Transitive but neither reflexive nor symmetric.

b) Reflexive and symmetric but not transitive.
Problem 5

Recall that the lexicographic ordering of the set \(\{0, 1\}^* \) of bit strings is

\[
\epsilon, 0, 1, 00, 01, 10, 11, 000, \ldots
\]

For \(n \in \mathbb{N} \), we denote the \(n \)th string in this ordering as \(s_n \). Therefore, \(s_1 = \epsilon, \ s_2 = 0, s_3 = 1 \), and so forth.

Prove using induction that for all \(n \in \mathbb{N} \),

\[
|s_n| = \lfloor \log_2(n) \rfloor,
\]

where \(|s_n| \) is the length of the string \(s_n \) and \(\lfloor \cdot \rfloor \) is the flooring function.

Bonus Problem: Does induction actually work?

The well-ordering principle states that every non-empty subset of \(\mathbb{N} \) has a smallest element.

Use the well-ordering principle to prove that proofs by induction are valid. More precisely, prove that if \(P : \mathbb{N} \to \{\text{true, false}\} \) is a predicate that satisfies the two properties

1. \(P(1) = \text{true} \)
2. \(P(n) = \text{true} \implies P(n + 1) = \text{true} \),

then for all \(n \in \mathbb{N} \), \(P(n) = \text{true} \).

You may not use a proof by induction.