Problem 1

Prove or disprove each of the following statements.

a) If \(f \in \mathcal{O}(g) \) and \(g \in \mathcal{O}(h) \), then \(f \in \mathcal{O}(h) \).

b) \(f \in \mathcal{O}(g) \), then \(f \in \omega(g) \).

Problem 2

Let \(A, B, C, D \) be languages such that \(A, B \in P \) and let \(C, D \in NP \). For each of the following statements, indicate whether the statement is true or false and justify your answer.

a) \(A \cup B \in P \)

b) \(C \cap D \in NP \)

c) \(\overline{A} \in P \)

d) \(C \circ D \in NP \)

Problem 3

Let \(\{0, 1\} \) be the alphabet for this problem. Define the bounded acceptance problem to be the language

\[B_{TM} = \{ \langle M, w, k \rangle \mid M \text{ is a TM and accepts } w \text{ in at most } k \text{ steps} \} \]

where \(k \) is a number encoded in binary.

For each of the following statements, indicate whether the statement is true or false and justify your answer.

a) \(B_{TM} \in P \)

b) \(B_{TM} \in NP \)

\textbf{HINT:} Think carefully about how the length of \(k \) grows relative to its value.
Problem 4

Let graphs be undirected in this problem. Define the language

$$\text{PATH}_{\text{SHORT}} = \{ \langle G, x, y, k \rangle \mid G \text{ contains a simple path from } x \text{ to } y \text{ of length at most } k \}.$$

Prove that $\text{PATH}_{\text{SHORT}}$ is in the class P by giving a polynomial-time Turing machine that decides it.

Problem 5

Let graphs be undirected in this problem. Define the language

$$\text{PATH}_{\text{LONG}} = \{ \langle G, x, y, k \rangle \mid G \text{ contains a simple path from } x \text{ to } y \text{ of length at least } k \}.$$

Prove that $\text{PATH}_{\text{LONG}}$ is in the class NP by giving a polynomial-time verifier.

Bonus Problem:

Prove that $\text{PATH}_{\text{LONG}}$ is NP-complete.