Final (Prepared Questions)

The final is a combined take-home and oral examination over the entirety of the course. Below are the questions that constitute the take-home portion of the examination. You should submit your solutions to these questions to PWeb by **Monday 5/16, 10:30 PM**. Like other written assignments, you will be graded primarily on the correctness of your solution and whether you are able to construct appropriately formal mathematical arguments.

In addition, you will present selected components of your answers at the beginning of the oral examination. These components are noted with a dagger (‡) in the problem descriptions below. You may bring your solutions along with one page of notes to your oral examination to aid you in this presentation.

Closure (For Real This Time)

The complement of a language L is defined as:

$$\overline{L} = \{w \mid w \notin L\}.$$

Recall that a closure operation is a transformation over languages of a particular class such that applying the transformation to any language in that class yields a language also in that class. For such an operation, we say that a language class is closed over that operation.

(a) (‡) Show that regular languages are closed under complement.

(b) Show that context-free languages are not closed under complement. (Hint: Prove this by utilizing the facts that (1) CFLs are closed under union and (2) CFLs are not closed under intersection along with some facts about sets from chapter 0 of Sipser.)

(c) Show that Turing-decidable languages are closed under complement.

(d) (‡) Show that Turing-recognizable languages are not closed under complement. (Hint: Prove this by contradiction. Assume that this theorem is false, i.e., Turing-recognizable languages are closed under complement. How could you use this assumption to show that an arbitrary Turing-recognizable language is actually decidable?)

(e) Show that P is closed under complement.

(f) Recall that $\overline{P} = \{A \mid A \in P\}$. Explain how the previous part proves that $P = \overline{P}$.

(g) (‡) Recall that $\overline{NP} = \{A \mid A \in NP\}$. Prove that if $P = NP$ then $NP = \overline{NP}$.

An Undecidable Proposition

A language L is double-down if for any $w \in L$, $ww \in L$ as well. Define the DOUBLE-DOWN language as:

$$\text{DOUBLE-DOWN} = \{\langle M \rangle \mid M \text{ is a TM and } L(M) \text{ is double-down}\}.$$

(‡) Prove that DOUBLE-DOWN is undecidable.