This homework is due Wednesday 3/9 @ 10:30 PM.
Please submit your solutions as a PDF (written in \LaTeX) to PWeb.

Problem 1 Ghost in the Machine

Show that the language $A = \{w \mid w \text{ contains three times as many 0s as 1s}\}$ is decidable. Give an implementation-level description of your Turing machine that proves this claim.

Problem 2 The Stack is Decked

Define a double PDA to be a PDA with two stacks. The transition function $\delta : Q \times \Sigma \times \Gamma \rightarrow Q \times \Gamma \times \Gamma$ reads in separate symbols to pop and push off of each stack with each transition. Prove the following claim about double PDAs:

Claim 1. For any language A, there exists a double PDA such that $L(P) = A \iff A$ is Turing-decidable.

Problem 3 Closure, Turing Edition

A homomorphism is a structure-preserving mapping between mathematical objects. In language theory, a homomorphism is a function $f : \Sigma_1 \rightarrow \Sigma_2$ that transforms characters from Σ_1 to Σ_2. This function is lifted to strings $f : \Sigma_1^* \rightarrow \Sigma_2^*$ pointwise, i.e., $f(w_1w_2\cdots w_n) = f(w_1)f(w_2)\cdots f(w_n)$. Finally, this function is also lifted to languages pointwise, i.e., $f(A) = \{f(w) \mid w \in A\}$. Show that the Turing-recognizable languages are closed under homomorphism.

Problem 4 Oddball

Let $A = \{<D> \mid D\text{ is a DFA and for all } w \in L(D), \ |w|\text{ is odd}\}$. Show that A is decidable.

Problem 5 Why No Diagonal?

Consider the following proof that \mathbb{N} is countable.

Claim 2. \mathbb{N} is countable.

Proof. Assume that \mathbb{N} is countable. Then there is a bijection f that covers every natural numbers in \mathbb{N}. Construct the natural number n where the ith digit of n is the ith digit of the ith natural number in the bijection (i.e., $f(i)$) plus one mod 10 (so that it is a decimal digit). That is, if k is the ith digit of the ith natural number, then the ith digit of n is given by $k + 1 \mod 10$. n is a valid natural number and by construction, n differs from every natural number in the bijection by one digit. Therefore, n cannot be in the bijection and therefore our assumption that such a bijection exists is incorrect. \hfill \square

We already know that \mathbb{N} is countable. What is wrong with this proof?
Problem 6 Halt In the Name Of

Prove the following claim by using Cantor’s diagonalization method:

Claim 3. Define $HALT_{TM} = \{ <M, w> \mid M \text{ halts on } w \}$. $HALT_{TM}$ is undecidable.

Problem 7 Final Report

Please indicate how much time you spent on this homework. Thanks!