
Programming Assistance for Type-Directed Programming
(Extended Abstract)

Peter-Michael Osera
Grinnell College, USA

osera@cs.grinnell.edu

Abstract
Type-directed programming is a powerful programming paradigm
where rich types dictate the structure of the program, making
design largely automatic. While mechanical, this paradigm still
requires manual reasoning that is both tedious and error-prone. We
propose using type-directed program synthesis techniques to build
an interactive programming assistant for type-directed programming.
This tool bridges the gaps between simple auto-completion engines
and program synthesis, complementing the strengths of each.

Categories and Subject Descriptors D.3.2 [Programming Lan-
guages]: Language Classifications—Applicative (Functional) Lan-
guages; D.2.3 [Software Engineering]: Coding Tools and Tech-
niques—Program Editors; I.2.2 [Artificial Intelligence]: Automatic
Programming—Program Synthesis

Keywords Type-directed Programming, Program Synthesis

1. The Spectrum of Assistance to Synthesis
“My program just writes itself!” This phrase is frequently uttered by
programmers as they come to realize the power of typed func-
tional programming languages. In such languages, their type
systems are strong enough to greatly constrain the set of pos-
sible programs that the developer can write. For example, con-
sider writing a program that has type int -> string. If we
have two functions, f : int -> bool and g : bool -> string,
then by inspecting the types, we may consider the program
let f (x:int) : string = g (f x), the composition of f and
g. This is, of course, not the only possible function; there are an infi-
nite number of them. However, consider writing a program that has
the richer polymorphic type (’a -> ’b) -> ’a list -> ’b list.
There are far fewer programs that one can write of this type, only
one of which (the canonical map function) that does something
reasonable with its inputs.

While a developer may feel like writing a richly-typed program
is automatic, the actual process is anything but. The developer must
reason carefully about the programming constructs, operations, and
functions available to her and deduce how to put them all together
into a final program. In a language with many available components,
she may find it difficult and tedious to keep track of all them and
comb through the various possibilities. Ultimately, this process is

[Copyright notice will appear here once ’preprint’ option is removed.]

mechanical. Therefore, it ought to be possible for our programming
environment—languages, editors, and tools—to support reasoning
about program design in a type-directed fashion.

Two classes of approaches have been proposed in the past to
assist developers in type-directed program development. Type-based
auto-completion tools (Perelman et al. 2012; Gvero et al. 2013) use
types to identify candidate components—usually function calls—
that could complete a given program fragment. Goal-refinement
programming tools such as the typed holes feature of Haskell
(inspired by similar features found in automated theorem provers
like Coq and Agda) give the user information about the context—the
set of available components and their types—at the current point in
the program. However, these two approaches fall short in distinct
dimensions. Goal-refinement tools help the developer manage the
complexity of types but do not automate the reasoning she must
perform to write the final program. Type-based auto-completion
tools typically have limited scope; they can only analyze function
calls or similar expressions and cannot handle more complex
programming constructs such as conditionals. Ideally, we would like
a tool that can handle the full breadth of our programming language
while automating the reasoning process in some way.

Fully automating the type-directed programming process is a
form of program synthesis. Program synthesis is the automatic
generation of programs from specification. Recently, researchers
have investigated the use of type theory as a means to optimize
the synthesis process (Feser et al. 2015; Osera and Zdancewic
2015; Scherer and Rèmy 2015; Frankle et al. 2016; Polikarpova
et al. 2016). These techniques all take advantage of the constraining
nature of rich types to narrow the search space of possible programs
to a manageable size of candidates that can then be filtered through
other specification, e.g., input-output examples denoting how the
desired program should behave.

While researchers have made substantial advances in program
synthesis over the last thirty years, the problem still proves to be a dif-
ficult one to completely solve. Because the set of possible programs
grows exponentially with program size and there are (usually) an
infinite number of such candidates to explore, general-purpose syn-
thesizer, type-directed or otherwise, can only synthesize programs
of modest size. To get around this problem, researchers typically
target a narrower domain of programs, sacrificing expressiveness
for tractability. This approach has seen great success but does not
solve the synthesis problem for general-purpose programming.

Rather than narrowing the scope of the synthesizer, we propose
a semi-automated synthesis approach for type-directed program-
ming, bridging the gap between the previous work in type-directed
programming assistance and general program synthesis. Our cur-
rent prototype, SCOUT, uses the MYTH synthesizer (Osera and
Zdancewic 2015) to power an emacs plugin that assists a program-
mer in developing OCaml functions. It does this by displaying
possible program skeletons based on a specification of types and ex-

To appear in TyDe ’16 1 2016/8/12

osera@cs.grinnell.edu

amples. The programmer interacts with the tool by specifying which
of these skeletons she would like to explore further, substantially
pruning the search space of programs the synthesizer must consider.

2. SCOUT: Interactive Refinement with Types
The core of the MYTH synthesizer utilizes a type-theoretic, foun-
dational approach to program synthesis where the “inputs” and
“outputs” of the typing relation of a language, written Γ ` e : τ ,
are swapped and augmented with example refinement to create a
program synthesis relation Γ ` τ BX e. To turn this relation
into a synthesis algorithm, MYTH employs a data structure called a
refinement tree which encodes the shape of potential programs that
could be synthesized according to the types and examples that the
user provides. These shapes are drawn from the introduction forms
of the language, the expressions that introduce values of a given
type, e.g., functions. They are determined entirely by the synthesis
specification and thus can be discovered quickly by the synthesizer.
In contrast, elimination forms are expressions that consume values
of a given type, e.g., function application. MYTH enumerates elimi-
nation forms in a separate, more time-consuming pass in order to
complete the refinement tree and create a final program.

Here is an example refinement tree that might be created while
synthesizing a list length function:

� : list → nat

let rec length (l:list) : nat = � : nat

match lwith

| Nil → �1 : nat

| Cons(x, l′) → �2 : nat

(1)
O

(2)
S(� : nat)

Nodes in the tree correspond to synthesis goals: partial programs
with typed holes written � : τ . For example, the root denotes the
initial goal of synthesizing a program of type list → nat. Its child
denotes solving this goal by synthesizing an introduction form, here
a function, leaving the body of the function as a synthesis sub-
problem that must be solved. The synthesizer incrementally grows
the tree by exploring the set of possible introduction forms of the
hole’s type, refining the types and examples in the process. Holes
left unfilled, e.g., the “� : nat” goal in the Cons branch of the
match, are filled in by the synthesizer in a separate pass where raw
elimination forms are enumerated (in order of increasing program
size) and checked against the examples.

For complex programs, the refinement tree may possess many
branches with many sub-synthesis problems to solve, and the leaves
of the tree may require large elimination forms to be guessed
that take a significant amount of time to enumerate. This leads
to the exponential performance bottleneck described in the previous
section. For example, a node in the refinement tree may be fulfilled
by many match expressions

� : bool

matchn1 with
...

matchn2 with
...

matchn1 + 0with
...

some of which are plausible but others are redundant or unfruitful.

Because MYTH is fully automatic, it is forced to explore all
of these possibilities. However, using SCOUT, the user provides
additional insight to the synthesizer by choosing which of these
possible refinements to explore, implicitly pruning out the other
branches in the process. With the example above, SCOUT reports
the types of the variables in the context and the refined examples
at this point in the program. The user then uses this information to
choose one of the three possible refinements to explore, e.g., the
match that analyzes n1. When the synthesizer now tries to fill in
the remaining holes, it only needs to fill in the program skeleton
user chose, a dramatic reduction of the search space.

3. Current Status and Future Directions
We are currently developing the initial SCOUT prototype to investi-
gate the effectiveness of this semi-automated type-directed approach
to program development. As a program synthesis tool, we hypothe-
size that user-driven pruning of the refinement tree will allow SCOUT
to synthesize much larger programs than MYTH could handle, and
as a program assistance tool, we hypothesize that the information
and automation that the tool provides will help functional program-
mers write code in a type-directed style much more efficiently. Our
initial experimentation with our prototype has shown great promise
with respect to both these hypotheses.

Finally, while developing SCOUT, we have begun to ask our-
selves a number of additional questions about the usability of type-
directed programming tools and synthesizers. In particular: 1. What
is an appropriate balance between ease-of-use, speed, and automa-
tion for a programming assistant? 2. What information does the user
need to productively guide an interactive synthesizer? In addition
to usability, the interactive nature of SCOUT has also led to some
interesting questions about our synthesis techniques. Because the
tool is now operating in an interactive setting, the synthesizer must
behave gracefully when the user edits the code outside of the syn-
thesizer. Simply re-parsing the world and starting from scratch is
not acceptable because synthesis is a time-consuming process. We
instead need to preserve as much synthesis information as possible
when updating the synthesizer’s state in light of these edits.

References
J. K. Feser, S. Chaudhuri, and I. Dillig. Synthesizing data structure

transformations from input-output examples. In Proceedings of the
36th ACM SIGPLAN Conference on Programming Language Design
and Implementation (PLDI), 2015.

J. Frankle, P.-M. Osera, D. Walker, and S. Zdancewic. Example-directed
synthesis: A type-theoretic interpretation. In Proceedings of the 43st An-
nual ACM SIGACT-SIGPLAN Symposium on Principles of Programming
Languages (POPL), POPL 2016, 2016.

T. Gvero, V. Kuncak, I. Kuraj, and R. Piskac. Complete completion using
types and weights. In Proceedings of the 2013 ACM SIGPLAN Conference
on Programming Language Design and Implementation (PLDI), 2013.

P.-M. Osera and S. Zdancewic. Type-and-example-directed program synthe-
sis. In Proceedings of the 2015 ACM SIGPLAN Conference on Program-
ming Language Design and Implementation (PLDI), 2015.

D. Perelman, S. Gulwani, T. Ball, and D. Grossman. Type-directed com-
pletion of partial expressions. In Proceedings of the 2012 ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), 2012.

N. Polikarpova, I. Kuraj, and A. Solar-Lezama. Program synthesis from
polymorphic refinement types. In Proceedings of the 2015 ACM SIG-
PLAN Conference on Programming Language Design and Implementa-
tion (PLDI), 2016.

G. Scherer and D. Rèmy. Which simple types have a unique inhabitant?
In Proceedings of the 18th ACM SIGPLAN International Conference on
Functional Programming (ICFP), 2015.

To appear in TyDe ’16 2 2016/8/12

	1 The Spectrum of Assistance to Synthesis
	2 Scout: Interactive Refinement with Types
	3 Current Status and Future Directions

