Fundamentals of Computer Science I: Media Computing (CS151.02 2007F)
[Skip to Body]
Primary:
[Front Door]
[Glance]

[Academic Honesty]
[Instructions]
Current:
[Outline]
[EBoard]
[Reading]
[Lab]
[Assignment]
Groupings:
[Assignments]
[EBoards]
[Examples]
[Exams]
[Handouts]
[Labs]
[Outlines]
[Projects]
[Readings]
[Reference]
Reference:
[Scheme Report (R5RS)]
[Scheme Reference]
[DrScheme Manual]
Related Courses:
[CSC151.01 2007F (Davis)]
[CSC151 2007S (Rebelsky)]
[CSCS151 2005S (Stone)]
This reading is also available in PDF.
Summary: We examine a variety of issues pertaining to numeric values in Scheme, including the types of numbers that Scheme supports and some common numeric functions.
Contents:
Computer scientists write algorithms for a variety of problems. Some types of computation, such as representation of knowledge, use symbols and lists. Others, such as the construction of Web pages, may involve the manipulation of strings (sequences of alphabetic characters). However, as you've seen with your initial experiments with images, a significant amount of computation involves numbers.
One advantage of doing numeric computation with a programming language, like Scheme, is that you can write your own algorithms to make the computer automate repetitive tasks. As you do numeric computation in any language, you must first discover what types of numbers the language supports (some languages support only integers, some only real numbers, some combinations) and what numeric operations the language supports. Fortunately, Scheme supports many types of numbers (as you may have discovered in the first few labs) and a wide variety of operations on those numbers.
As you probably learned in secondary school, there are a variety of kinds of numbers. The most common types are the integers (numbers with no fractional component), rational numbers (numbers that can be expressed as the ratio of two integers), and real numbers (numbers that can be plotted on a number line). DrFu supports only integers and real numbers.
In some Scheme implementations, other numeric types are available, such as the complex numbers (numbers with a possible imaginary component). While you will not use those other types in this course, we alert you to their availability so that you can think of applications outside of the primary focus of this course. Why does DrFu leave out some kinds of numbers? Because the implementers did not see a need for them in the kinds of applications DrFu was intended for. The standard language definition for Scheme says that an implementation of the language does not have to support all categories of numbers.
Scheme provides two predicates that let us check whether or
not a value has a particular type: integer?
and
real?
.
> (integer? 2) #t > (real? 2) #t > (integer? 2.5) #f > (real? 2) #t > (integer? "two") #f
DrFu uses integers to represent colors and image identifiers,
so integer?
will return true for them, too.
> (integer? (rgb.new 0 0 0)) #t > (integer? (image.load "/home/rebelsky/glimmer/samples/rebelskystalkernet.jpg")) #t > (integer? "/home/rebelsky/glimmer/samples/rebelskystalkernet.jpg") #f
We will return to predicates when we consider conditionals.
Within each of these categories of numbers, Scheme distinguishes between exact numbers, which are guaranteed to be calculated and stored internally with complete accuracy (no rounding off), and approximations, also called inexact numbers, which are stored internally in a form that conserves the computer's memory and permits faster computations, but allows small inaccuracies (and occasionally ones that are not so small) to creep in. Since there's no great advantage in obtaining an answer quickly if it may be incorrect, we shall avoid using approximations in this course, except when the data for our problems are themselves obtained by inexact processes of measurement
To determine whether Scheme is representing a particular number exactly or
inexactly, use one of the predicates exact?
and
inexact?
. Real numbers are never represented exactly, and
integers can be represented exactly or inexactly.
> (exact? 2) #t > (exact? 2.0) #f
The Scheme standard does not directly support the familiar category of natural numbers, but we can think of them as being just the same things as Scheme's exact nonnegative integers.
Section 6.2.5 of the Revised^{5} report on the algorithmic language Scheme lists Scheme's primitive procedures for numbers. Read through the list at this point to get a feel for what Scheme supports. The following notes explain some of the subtler features of commonly used numerical procedures. As you read about procedures, think about how you might use them in writing color filters or in other graphical algorithms.
Warning! The output from DrFu is not always consistent with our expectations. DrFu is also evolving. In a few cases, you may see slightly different resopnses than appear in this reading.
The addition and multiplication procedures, +
and
*
, accept any number of arguments. You can, for instance,
ask Scheme to imitate a cash register with a command like this one:
> (+ 1.19
.43
.43
2.59
.89
1.39
5.19
.34
)
12.45
You can call the 
procedure or the /
procedure to operate on a single argument. The 
procedure returns the additive inverse of a single argument (its negative), the result of subtracting it from 0.
The max
procedure returns the largest of its parameters and
the min
procedure returns the smallest of its parameters.
As we've already seen, max
can be useful when you want to
ensure that a computation returns a value no smaller than a certain value
and min
can be useful when you want to ensure that a computation
returns a value no larger than a desired maximum value.
There are four procedures relating to division (/
,
quotient
, remainder
, and modulo
).
The /
procedure returns the multiplicative inverse of a
single argument (its reciprocal), the result of dividing 1 by it.
The quotient
and remainder
procedures apply only
to integers and perform the kind of division you learned in elementary
school, in which the quotient and the remainder are separated: Four
goes into thirteen three times with a remainder of one
:
> (quotient 13 4) 3 > (remainder 13 4) 1 > (quotient 1 2.5) quotient: expects type <integer> as 2nd argument, given: 2.5; other arguments were: 1
As the final example suggests, quotient
can only be applied
to integers. The /
procedure, on the other hand, can be
applied to numbers of any kind (except that you can't use zero as a
divisor) and yields a single result.
The modulo
procedure is like remainder
, except
that it always yields a result that has the same sign as the divisor. In
particular, this means that when the divisor is positive and the dividend
is negative, modulo
yields a positive (or zero) result.
(When can a remainder be negative? Consider 5 divided by 2. Do we
think of 5 as 2*21 or 3*2+1? Scheme makes the former decision for
remainder and the latter decision for modulo.)
> (remainder 13 4) 1 > (modulo 13 4) 3
The modulo procedure can be particularly useful for color
computations. As you have noted, sometimes we end up computing
a component value greater than 255 or less than 0. In those cases,
we can ensure that they fall within the appropriate range with
max
and min
. We can get somewhat different
effects by using (modulo computedvalue 256)
.
This expression ensures that the value is between 0 and 255, but
causes larger numbers to wraparound to become smaller
numbers.
> (define bluecomponent 250) > (min 255 (+ 32 bluecomponent)) 255 > (mod (+ 32 bluecomponent) 256) 26
At times, we will have a real number and will want to convert it to a
nearby integer. For example, if you are working with images, the components
of an RGB should be integers; weird things can happen if you try to use
real numbers (not always, but sometimes). Scheme provides four basic
procedures for this conversion: round
, truncate
,
floor
, and ceiling
. You will explore the
differences between these procedures in the corresponding lab.
Scheme provides five basic predicates for comparing numeric values,
<
(less than),
<=
(less than or equal to),
=
(equal to),
>=
(greater than or equal to),
and
>
(greater than). When given two arguments, they return
#t
if the indicated relation holds between the two arguments.
> (< 5 10) #t > (> 5 10) #f
These predicates and also take more than two arguments. The predicate
returns #t
only if the relation holds between each pair of adjacent
arguments.
> (< 2 3 4) #t > (< 2 3 1) #f
The log
procedure, despite its name, computes natural
(base e) logarithms rather than common (base ten) logarithms. You can
convert a natural logarithm into a common logarithm by dividing it by
the natural logarithm of 10. In case you've forgotten, the common
logarithm of n is the power to which you raise 10 in order
to get n
.
> (log 100) 4.605170185988092 > (/ (log 100) (log 10)) 2.0
Scheme provides the standard host of trigonometric functions, which include
sin
, cosine
, and tan
. When
using these functions, bear in
mind that all angles are measured in radians, not degrees.
> (sin 90) 0.8939966636005579 > (cos 90) 0.4480736161291701 > pi 3.141592654 > (exact? pi) #f > (sin (/ pi 2)) 1.0 > (cos (/ pi 2)) 6.123031769e17
You may wonder why the cosine of piover2 (a right angle) is not 0.
It's because pi
is not exactly the value of pi. However,
as scientific notation indicates, the value is pretty close to 0. (There
are sixteen leading 0's.)
We can use the trigonometric functions when we start doing more involved drawings (e.g., they can help us draw polygons). The trigonometric functions also provide the opportunity to do some interesting color transformations.
http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/History/Readings/numbers.html
.
[Skip to Body]
Primary:
[Front Door]
[Glance]

[Academic Honesty]
[Instructions]
Current:
[Outline]
[EBoard]
[Reading]
[Lab]
[Assignment]
Groupings:
[Assignments]
[EBoards]
[Examples]
[Exams]
[Handouts]
[Labs]
[Outlines]
[Projects]
[Readings]
[Reference]
Reference:
[Scheme Report (R5RS)]
[Scheme Reference]
[DrScheme Manual]
Related Courses:
[CSC151.01 2007F (Davis)]
[CSC151 2007S (Rebelsky)]
[CSCS151 2005S (Stone)]
Disclaimer:
I usually create these pages on the fly
, which means that I rarely
proofread them and they may contain bad grammar and incorrect details.
It also means that I tend to update them regularly (see the history for
more details). Feel free to contact me with any suggestions for changes.
This document was generated by
Siteweaver on Mon Dec 3 09:54:00 2007.
The source to the document was last modified on Thu Sep 13 21:18:37 2007.
This document may be found at http://www.cs.grinnell.edu/~rebelsky/Courses/CS151/2007F/Readings/numbersreading.html
.
You may wish to validate this document's HTML ; ;
Samuel A. Rebelsky, rebelsky@grinnell.eduhttp://creativecommons.org/licenses/bync/2.5/
or send a letter to Creative Commons, 543 Howard Street, 5th Floor,
San Francisco, California, 94105, USA.