Class 49: Merge Sort

Held: Monday, May 3, 2010

Summary: We continue our exploration of sorting by considering the applicability of divide-and-conquer to the problem of sorting. We look at one particular divide-and-conquer algorithm, merge sort. We explore how the running time for that algorithm varies based on the number of values we are sorting.

Related Pages:
- EBoard.
- Lab: Merge Sort.
- Reading: Merge Sort.

Notes:
- For Tuesday and Wednesday, please review your classmates’ work (URL distributed electronically).
- I’ll reserve time at the start of class for questions on the examination.
- EC for Thursday’s Convocation.
- EC for Sunday’s Belly Dance performance (1:30 in Flanagan).

Overview:
- More efficient sorting techniques.
- Divide and conquer, revisited.
- Merge sort.
- Analyzing merge sort.

Key Ideas of Merge Sort
- Divide and conquer is often a useful design strategy.
- For sorting, natural division is "first half" / "second half".
- What do we do after sorting the two halves? Merge ’em.

An Alternate Implementation
- We can do something very much like merge sort while avoiding the splitting step.
- We start with a list of sorted lists, and repeatedly merge neighboring pairs.
- This technique is slightly easier to implement.
- This technique is much easier to analyze.
The Costs of Merge Sort

- What’s the running time? We do approximately \(N \times \log_2 N\) comparisons.
- The analysis:
 - \(N\) steps to merge 2 sorted lists of length \(N/2\)
 - \(N\) steps to merge 4 sorted lists of length \(N/4\) into those two sorted lists.
 - \(N\) steps to merge 8 sorted lists of length \(N/8\) into those four sorted lists.
 - And so on and so forth.
- Can we do better? Not if our sorting is based on comparing values to each other.

Lab

- Do the lab.
- Pause to reflect.