
CSC161 2011S Imperative Problem Solving

Assignment 5: Writing Linux Utilities
Assigned: Friday, 25 February 2011
Due: 11:00 p.m., Wednesday, 2 March 2011

Summary: In this assignment, you will build a variety of simple Linux utilities.

Purposes: To give you more experience with conditionals in C. To further ground your understanding of
binary search. To remind you of the power of the Unix model.

Expected Time: Three to four hours.

Collaboration: I encourage you to work in groups of two or three students. However, you may work on
your own or in groups of up to size four. You may discuss the assignment with anyone you wish, provided
you clearly document such discussions.

Submitting: Submit tarballs of your solutions on Pioneerweb.

Warning: So that this assignment is a learning experience for everyone, I may spend class time publicly
critiquing your work.

Assignment

Problem 1: Sums

Recently, you wrote a program that printed all of the numbers read from standard input. Here’s a variant of
that program that prints all of the integers read from standard input.

/**
 * ints - extract all the integers from standard input and print them
 * one per line.
 */

// +---------+--
// | Headers |
// +---------+

#include <stdio.h> // For printf, getchar, and putchar
#include <ctype.h> // For isdigit

// +-------+--
// | Types |
// +-------+

/**
 * The states of our program. We can either be inside our outside
 * of a number.

1

http://www.cs.grinnell.edu/~rebelsky/Courses/CSC161/2011S/

 */
enum state { IN, OUT };

// +------+---
// | Main |
// +------+

int
main ()
{
 int ch; // An input character
 int sign = 0; // The sign, if there is one.
 enum state state = OUT; // The state of input; initially outside.

 // Repeatedly read and process characters
 while ((ch = getchar ()) != EOF)
 {
 // Is it a digit? If so, print it out and note that we’re now
 // in a number.
 if (isdigit (ch))
 {
 // Print out the sign, if one is waiting
 if (sign)
 {
 putchar (sign);
 sign = 0;
 }
 // Print it out
 putchar (ch);
 // And note that we’re in a number.
 state = IN;
 } // if isdigit(ch)

 // Is it a plus or minus sign? If so, remember it.
 else if ((ch == ’+’) || (ch == ’-’))
 sign = ch;

 // Otherwise, it’s neither a digit or a sign. If we were in a
 // number, we should print a newline.
 else if (state == IN)
 {
 putchar (’\n’);
 state = OUT;
 sign = 0;
 } // leaving a number

 // It’s not a digit or a sign, and we’re not in a number. Clear
 // any signs that are set.
 else
 sign = 0;
 } // while

 // And we’re done
 return 0;
} // main

2

Write a program, sum, that reads integers from standard input and computes the sum of those integers.

For example,

$ cat nums
5
1
2
6
$ cat nums | ./sum
14

As you might guess, we can use ints in conjunction with sum to extract all the integers from a file and
then sum them.

$ cat grades
Joe:Smith:HWA:10
Joe:Smith:HWB:8
Joe:Smith:HWC:7
Joe:Smith:HWD:-1:Penalized for ...
$ cat grades | ./ints | ./sum
24

Problem 2: Selecting Numbers

Write a program, select, that takes two command-line parameters: an binary operator and an integer,
and that reads numbers froms standard input and selects (prints out) those of the numbers for which the
result of applying the binary operator to the value gives a nonzero result.

For example,

./select ’>’ 5 - prints out the numbers from standard input that are greater than 5

./select == 3 - prints out the numbers from standard input that are equal to 3. (Okay, that’s
somewhat silly, but it can be helpful.)
./select & 2 - prints out the numbers from standard input that have their two’s bit set.

You should support the operators <=, <, ==, !=, >, >=, |, &, and ^.

Since < and > are used for redirection, you’ll need to put them in quotation marks when you use them on
the command line.

Problem 3: Counting Numbers

Suppose the file grades.txt contains grades in the form given above. Write a command that counts
how many grades are in the range 50-80.

3

Problem 4: Improving Binary Search

Consider the following program that extends K&R’s binary search.

/**
 * binsearch X V0 V1 ... VN
 * Search for X in [V0,V1,V2,...,VN]
 *
 * Based on example on p. 58 of K&R 2nd edition.
 *
 * Disclaimer: This program does not do significant error checking.
 */

// +---------+--
// | Headers |
// +---------+

#include <stdio.h> // For printf
#include <stdlib.h> // For atoi

// +-----------+--
// | Constants |
// +-----------+

/**
 * Are we testing our program, which means we want extra output?
 */
#define TESTING 0

// +-----------+--
// | Utilities |
// +-----------+

/**
 * binsearch (x, v[], n)
 * Find the index of x in the sorted array v of size n.
 * Return -1 if the value is not found.
 */
int
binsearch (int x, int v[], int n)
{
 int low; // The low end of the part we’re searching
 int high; // The high end of the part we’re searching
 int mid; // Tee middle of the part we’re searching

 // Initially, we want to search the whole array
 low = 0;
 high = n - 1;

 // Continue searching parts of the array until we find the
 // element (return in the middle) or we run out of elements
 // to look at.
 while (low <= high)
 {

4

 mid = (low+high) / 2; // Potential bug, but ok for now
 if (TESTING)
 {
 printf ("x = %d, low = %d, mid = %d, high = %d\n",
 x, low, mid, high);
 }
 // Does x belong in the left half?
 if (x < v[mid])
 high = mid - 1;
 // Does x belong in the right half?
 else if (x > v[mid])
 low = mid + 1;
 // Otherwise, x is v[mid]
 else
 return mid;
 } // while (low <= high)

 // Since we’ve looked at the whole array, the value isn’t there.
 return -1;
} // binsearch

/**
 * looks_like_int(str)
 * Determine if the string looks like an integer.
 */
int
looks_like_int (char *str)
{
 int i = 0;

 // Skip over leading sign.
 if ((str[0] == ’+’) || (str[0] == ’-’))
 ++i;

 // Consider remaining characters.
 while (str[i] != ’\0’)
 {
 if (! isdigit (str[i]))
 return 0;
 ++i;
 } // while

 // We’ve read through all the characters. It must be an integer.
 return 1;
} // looks_like_int

/**
 * print_vector(v, n)
 * Print a vector of ints
 */
void
print_vector (int v[], int n)
{
 int i; // A counter variable. What else?
 printf ("{");
 if (n > 0)
 {

5

 printf ("%d", v[0]);
 for (i = 1; i < n; i++)
 printf (",%d", v[i]);
 } // if (n > 0)
 printf ("}");
} // print_vector

// +------+---
// | Main |
// +------+

int
main (int argc, char *argv[])
{
 int x; // The value we’re searching for
 int n = argc-2; // The size of the vector we’re searching
 int v[n]; // The vector to search
 int i; // Everyone’s favorite counter variable
 int index; // The index of x in v.

 // Sanity check
 if (argc < 2)
 {
 printf ("Usage: %s X V0 V1 ... VN-1\n", argv[0]);
 return -1;
 }

 // Grab x
 if (! looks_like_int (argv[1]))
 {
 printf ("Invalid X. Given %s, expected an integer.\n", argv[1]);
 return 1;
 }
 x = atoi (argv[1]);

 // Build v
 for (i = 2; i < argc; i++)
 {
 if (! looks_like_int (argv[i]))
 {
 printf ("Invalid V[%d]. Given %s, expected an integer.\n",
 i-2, argv[i]);
 return i;
 }
 v[i-2] = atoi (argv[i]);
 } // for

 // Find the index of x
 index = binsearch (x, v, n);

 // Print the result
 if (index == -1)
 {
 printf ("Could not find %d in the vector ", x);
 print_vector (v, n);
 printf ("\n");

6

 } // if not found
 else
 {
 printf ("The index of %d in the vector ", x);
 print_vector (v, n);
 printf (" is %d.\n", index);
 } // if found

 // And we’re done
 return 0;
} // main

Rewrite the binsearch function so that it does one test inside the loop instead of two.

Problem 5: Searching Strings

Consider the following program fragment:

 char *tlas[] = {
 "GNU",
 "IBM",
 "LOL",
 "SAD",
 "SAM",
 "TLA"
 };
 char *defns[] = {
 "GNU’s Not Unix",
 "International Business Machines",
 "Laugh Out Loud",
 "Seasonal Affective Disorder",
 "Sam’s Amazing Mastery",
 "Three-Letter Acronym"
 };

As you can tell, the ith element of defns contains a definition for the ith element of tlas.

Write a program, tla, that takes a three letter acronym from the command line and prints out its
expansion. For example,

$ tla IBM
IBM is International Business Machines.
$ tla FOO
Sorry, FOO is undefined.

Your strategy is simple: Use binary search to determine the position of the tla in tlas and then print out
the corresponding element of defns.

You’ll need to modify binsearch to deal with strings. You’ll find the strcmp procedure useful.
strcmp (str0, str1) returns

7

a negative number, if str0 alphabetically precedes str1;
a positive number, if str0 alphabetically follows str1;
zero, otherwise.

Submitting Your Homework
Using script, build logs of sample runs of your programs.

Put those logs, your source code, and any other files you deem appropriate in a directory called
usernames.hw5.

Make a tarball of that directory.

Submit the tarball on Pioneerweb under the Assignment 5 link.

8

	Assignment 5: Writing Linux Utilities
	Assignment
	Problem 1: Sums
	Problem 2: Selecting Numbers
	Problem 3: Counting Numbers
	Problem 4: Improving Binary Search
	Problem 5: Searching Strings

	Submitting Your Homework

