
VideoScheme: A Programmable Video Editing System for
Automation and Media Recognition

James Matthews
Dartmouth College1

Peter Gloor
Massachusetts Institute of

Technology2

Fillia Makedon
Dartmouth College3

Abstract

The recent development of powerful, inexpensive
hardware and software support has made digital video
editing possible on personal computers and
workstations. To date the video editing application
category has been dominated by visual, easy-to-use,
direct manipulation interfaces. These systems bring
high-bandwidth human-computer interaction to a task
formerly characterized by slow, inflexible, indirectly-
operated machines. However, the direct manipulation
computer interfaces are limited by their manual
nature, and can not easily accomodate
algorithmically-defined operations. This paper
proposes a melding of the common direct
manipulation interfaces with a programming
language which we have enhanced to manipulate
digital audio and video. The result is a system which
can automate routine tasks as well as perform tasks
based on sophisticated media recognition algorithms.

1. Introduction: Digital Video Editing with Direct
Manipulation

In “Virtual Video Editing in Interactive Multimedia
Applications” Mackay and Davenport described a new reality

1Department of Mathematics and Computer Science, Dartmouth
College, Hanover, NH 03755. Jim.Matthews@dartmouth.edu.
2Laboratory for Computer Science, MIT, 545 Technology Sq.,
NE43-506, Cambridge, MA 02139. gloor@lcs.mit.edu.
3Department of Mathematics and Computer Science, Dartmouth
College, Hanover, NH 03755. Fillia.Makedon@dartmouth.edu.

This work was partially supported by the Dartmouth
Experimental Visualization Laboratory.

for the producers and consumers of moving picture
information: “video becomes an information stream, a data
type that can be tagged and edited, analyzed and annotated”[3].
At the same time, the value of moving picture information has
become increasingly clear in a wide range of fields, from
education to business to scientific visualization. Software
developers have seized this opportunity to produce software for
manipulating this new data type: examples include Adobe’s
Premiere [5] and DiVA’s VideoShop [1]. Premiere and
VideoShop allow users to edit video data in much the same way
that popular word processors allow users to edit text. Video is
represented by visual proxies, typically thumbnail images and
graphic representations of audio waveforms. Users can use a
mouse to click on desired movie clips and drag them into place.
VCR-style buttons can be used for playback, and a collection of
other metaphorical tools (e.g. scissors, magnifying glass,
trash can) are available.

In one sense these tools take the video editor back to the time
before videotape, when film editors held their media in their
hands and edited it without the intermediate presence of video
decks and time codes. But the new digital systems offer
advantages beyond a more direct interaction with the media.
Thanks to random-access storage devices these systems let the
editor manipulate many sections of video simultaneously, with
quick jumps to any point in the source material. There is no
penalty to repeated editing, since the digital information does
not degrade. The user interface can be tailored to use common
metaphors and standard commands for the computer platform in
question. The result is an environment where casual
experimentation is encouraged, and beginners can quickly
produce acceptable results.

The direct manipulation nature of these systems, however, also
limits user options. Some repetitive or complex functions can
not be expressed with the provided tools. A user can visually
select and delete a period of silence in an audio track, but in a
pure direct manipulation interface there is no way to abstract
that specific operation into a more general command (“if there
is silence, delete audio data”) that can be applied repetitively.
The ability to evaluate conditions (e.g. “is this audio data
silent”, “is this a scene transition”) is left to human eyes and
ears, when the computer might be able to do the job more
quickly or accurately. And the user is limited to the operations
that the system designer considered important; an unusual
function, or combination of functions may be completely out
of reach, and no designer can imagine or implement all the
functions that might prove to be useful.

Figure 1: The VideoScheme System

2. Related Work

Researchers have attempted to address the shortcoming
described above, both in the wider domain of direct
manipulation software and in the specific area of video editing
systems. Eisenberg’s SchemePaint system combines a simple
painting program with a Scheme interpreter [2]. The result is
an immediately useable system that can also be programmed to
produce results that are not possible with a strictly manual
interface. Eisenberg argues for the incorporation of domain-
enriched programming languages into a wide variety of direct
manipulation systems, including video editing systems.

Ueda, Miyatake, and Yoshizawa’s IMPACT system attempts to
enrich the video editing interface from another direction.
Rather than making it programmable in a general way
IMPACT’s designers supplement the direct manipulation
interface with powerful functions that exploit image
processing and analysis algorithms [3]. The IMPACT system
includes functions to identify “cuts” in a stream of video, to
classify cuts (for example as a zoom-in, or pan-left), and to

extract moving objects from scenes.

Our effort, called VideoScheme, borrows from both of these
examples: we have built an extensible video editing system
which provides the user with programming capabilities. By
embedding a program interpreter into a direct manipulation
video editing system we hope to achieve the flexibility and
expressiveness demonstrated by SchemePaint. In particular,
we hope to make it possible to implement the dedicated media-
analysis functions of the IMPACT system in this programming
language, yielding advantages in both power and flexibility.

3. VideoScheme – The System

The core of the VideoScheme system is a simple direct
manipulation video editor. It is implemented on the Apple
Macintosh, using Apple’s QuickTime software to handle video
storage, compression, and decompression [6]. Video files are
opened into windows that display the movie in a timeline
format. Video tracks are represented by a sequence of selected
frames, and audio tracks are represented by a graphical view of
the sound waveform. The user can scroll back and forth in time,
and change the display scale to view anything from a fraction
of a second to several minutes of video.

(next-cut movie track
0)

Programming window

Movie window

Scheme interpreter

VideoScheme functions

car
cdr
cons
defun
if
while
let
.
.
.

get-front-movie
get-audio-samples
get-video-frames

Figure 2: VideoScheme’s functional layout

(new-movie) -- return the id of a new movie

(open-movie movie-file) -- open and return the id of a movie file

(get-front-movie) -- return the front movie’s identifier

(get-movies) -- return a list of open movies

(get-movie-duration movie) -- return a movie’s length in seconds

(get-next-frame-time movie trackno time)
-- return the time stamp of the next frame

(get-audio-samples movie trackno time duration samples)
-- fill in samples array with audio data

(get-video-frame movie trackno time pixels)
-- fill in pixels array with image data

(get-color-histogram64 pixels histogram)
-- fill in histogram array with pixels’s

64-element color histogram

(clear-movie-clip movie time duration)
-- delete the specified movie segment

(cut-movie-clip movie time duration)
-- move the segment to the clipboard

(copy-movie-clip movie time duration)
-- copy the segment to the clipboard

(paste-movie-clip movie time duration)
-- replace the segment with the clipboard

contents

Figure 3: VideoScheme functions for manipulating video data

Embedded in this interactive program is a simple Scheme
programming environment, built around the publicly-available
SIOD interpreter [7]. Expressions are edited and evaluated in
text windows, which also collect program output. These text
windows co-exist with the video windows, allowing very quick
switches between manual editing operations and programming
(see Figure 1).

We chose the SIOD Scheme interpreter for its small size,
support of array data types, and its extensibility. This last
feature made it possible to add new built-in functions which
bridge the gap between the Scheme environment and video
editing. A partial list of the provided functions appears in
Figure 3. The functions are designed to be independent of the
lower-level QuickTime-based implementation; they could be re-
implemented on another platform, to allow for portability of
VideoScheme programs.

4. Automating Repetitive Tasks

The automation of repetitive, well-defined tasks can be
accomplished with simple programming language constructs.
A video editor may want to divide a long video sequence into
smaller, equal-sized chunks. By hand this would be a tedious,
error-prone process, but in VideoScheme it can be performed
with a simple program:

(define split-movie
 (lambda (movie chunk-size)
 (let
 ((time 0.0))
 (while (< time (get-movie-duration movie))

 ; copy the next chunk of the movie
 (copy-movie-clip movie time chunk-size)

 ; paste it into a new movie
 (paste-movie-clip (new-movie) 0.0 0.0)

 (set! time (+ time chunk-size))))))

Function 1: split-movie

With the function thus defined, splitting the frontmost movie
into one-minute-sections is as simple as evaluating the
expression (split-movie (get-front-movie) 60).

Similarly, a single new movie can be created by choosing
multiple excerpts from an existing movie. Indeed, by this
simple formula we can achieve the effect of speeding up the
movie:

(define speedup
 (lambda (movie factor)
 (let
 ((time 0.0)
 (new (new-movie)))
 (while (< time (get-movie-duration movie))

 ; copy a fraction of the next tenth
 ; of a second
 (copy-movie-clip movie time (/ 0.1 factor))

 ; paste it at the end of the new movie
 (paste-movie-clip new
 (get-movie-duration new)
 (get-movie-duration new))

 (set! time (+ time 0.1)))
 new)))

Function 2: speedup

So the expression (speedup (get-front-movie) 2)
returns a version of the frontmost movie that appears to run at
double speed, since every-other twentieth of a second has been

removed from it. An analogous function could be written to
duplicate information in a movie rather than removing it,
yielding a slow-motion effect.

We can make these mechanical functions sensitive to the
structure of the movie with the aid of VideoScheme’s built-in
functions. One of these, get-next-frame-time, returns a
list consisting of the timestamp and duration of the next frame
in a video track. With this function we can copy a movie on a
frame by frame basis, reconstructing it in reverse order:

(define reverse
 (lambda (movie trackno)
 (let
 ((time 0.0)
 (frame-info nil)
 (duration 0.0)
 (new (new-movie)))
 (while (< time (get-movie-duration movie))

 ; find out when the next frame starts,
 ; and how long it lasts
 (set! frame-info
 (get-next-frame-time movie trackno time))
 (set! time (car frame-info))
 (set! duration (car (cdr frame-info)))

 ; copy the next frame
 (copy-movie-clip movie time duration)

 ; paste it at the beginning of the new movie
 (paste-movie-clip new 0.0 0.0)

 (set! time (+ time duration)))
 new)))

Function 3: reverse

5. Media Recognition

Simple, repetitive functions are called for in some
circumstances, but their power is clearly limited by their
simplicity. Most video editing decisions must take the content
of the video data into account, and likewise more powerful
VideoScheme functions can be created when the media itself is
consulted. VideoScheme includes two built-in functions for
accessing the movie data: get-audio-samples and get-
video-frame. Each of these returns arrays of integers: 8-bit
sound samples in the case of get-audio-samples, and 24-bit
color pixel values in the case of get-video-frame. These
arrays can then be analyzed and the results used to create new
editing functions.

One straight-forward application is to search through video
data for periods of silence. We can characterize silence as a
period where none of the audio samples has an amplitude
greater than 10 (out of a maximum amplitude of 128). The
returned samples are in the range 0-255, where the sample value
128 an amplitude of zero. Therefore our silence predicate looks
like the following:

(define silence?
 (lambda (movie trackno time interval)
 (let
 ((samples (cons-array 0 'long)))

 ; get an array of audio samples
 (get-audio-samples movie trackno time
 interval samples)

 ; compute their absolute amplitudes
 (adiff samples 128 samples)
 (aabs samples samples)

 ; is the loudest sample less than 10?
 (< (amax samples) 10))))

Function 4: silence?

This predicate may prove unreliable with noisy audio sources;
in that case examining the median amplitude, or a certain
percentile might prove more effective. These possibilities can
be easily explored with VideoScheme.

Periods of silence may be interesting to a video editor, as they
often represent transitions. Visual transitions, or “cuts,” are
also likely to be of interest, and VideoScheme can be
programmed to automate the process of finding these
transitions. Nagasaka and Tanaka have investigated automatic
cut detection algorithms, obtaining the best results with a test
that measures the differences in color distributions between
adjacent frames [4]. Following their algorithm we can write a
function to compute the normalized difference between two
histograms:

(define histogram-difference
 (lambda (hist1 hist2)
 (let
 ((hist-diff (cons-array 0 'long)))

 ; subtract the two histograms
 (adiff hist1 hist2 hist-diff)

 ; square the difference
 (atimes hist-diff hist-diff hist-diff)

 ; normalize by one of the histogram arrays
 (aquotient hist-diff hist1 hist-diff)

 ; sum the squared, normalized differences
 (atotal hist-diff))))

Function 5: histogram-difference

This function makes use of VideoScheme’s built-in array
functions to subtract, square, normalize, and sum the histogram
differences. We can compute the histograms themselves using

a built-in function, making it a simple matter to compute the
visual continuity at any point:

(define full-frame-diff
 (lambda (movie trackno time1 time2)
 (let
 ((pixels (cons-array 0 'long))
 (hist1 (cons-array 64 'long))
 (hist2 (cons-array 64 'long)))

 ; get the histogram for one frame
 (get-video-frame movie trackno time1 pixels)
 (get-color-histogram64 pixels hist1)

 ; get the histogram for another
 (get-video-frame movie trackno time2 pixels)
 (get-color-histogram64 pixels hist2)

 ; compare the histograms
 (histogram-difference hist1 hist2))))

Function 6: full-frame-diff

Nagasaka and Tanaka found this function to be sensitive to
momentary image noise, which typically affected only parts of
the image but created undesirable spikes in the color
continuity. They eliminated this effect by dividing the frames
into 16 subframes, comparing the subframe histograms, and
discarding the 8 highest difference totals. We can implement
this improved algorithm in VideoScheme:

(define nagasaka-tanaka-diff
 (lambda (movie trackno time1 time2)
 (let
 ((pixels1 (cons-array 0 'long))
 (pixels2 (cons-array 0 'long))
 (sub-pixels (cons-array 0 'long))
 (hist1 (cons-array 64 'long))
 (hist2 (cons-array 64 'long))
 (diffs (cons-array 16 'long))
 (frame1 nil)
 (frame2 nil)
 (index 0))

 ; get the two frames in question
 (set! frame1 (get-video-frame movie trackno time1 pixels1))
 (set! frame2 (get-video-frame movie trackno time2 pixels2))

 (set! index 0)
 (while (< index 16)
 ; histogram one 16th of frame1
 (get-sub-frame16 frame1 index sub-pixels)
 (get-color-histogram64 sub-pixels hist1)

 ; histogram one 16th of frame2
 (get-sub-frame16 frame2 index sub-pixels)
 (get-color-histogram64 sub-pixels hist2)

 ; remember the difference
 (aset diffs index (histogram-difference hist1 hist2))
 (set! index (+ index 1)))

 ; order the subframe differences and discard the 8 highest ones
 (asort diffs)
 (asetdim diffs 8)

 ; total the remaining differences
 (atotal diffs))))

Function 7: nagasaka-tanaka-diff

A number of applications can be built using this measurement
of visual continuity. A simple function can search a movie for
the beginning of the next cut:

(define next-cut
 (lambda (movie trackno time)
 (let
 ((diff 0))
 (while
 (and
 (< diff 10000)
 (< time (get-movie-duration movie)))

 (set! diff
 (nagasaka-tanaka-diff movie trackno time
 (+ time 0.1)))
 (set! time (+ time 0.1)))
 time)))

Function 8: next-cut

We can modify the split-movie function presented earlier to
split a movie on scene boundaries rather at a fixed interval:

(define split-movie-by-cut
 (lambda (movie trackno)
 (let
 ((time 0.0)
 (cut 0.0))
 (while (< time (get-movie-duration movie))

 ; find the next cut
 (set! cut (next-cut movie trackno time))

 ; copy up to the next cut
 (copy-movie-clip movie time (- cut time))

 ; paste the segment into a new movie
 (paste-movie-clip (new-movie) 0.0 0.0)

 (set! time cut)))))

Function 9: split-movie-by-cut

Figure 4: Results of split-movie-by-cut

The results of executing the split-movie-by-cut function
on a fifteen second TV commercial are shown in Figure 4. The
movie “Fast News 80 x 60” has been split into nine segments,
seven of which are shown. In one case the cut-detection
algorithm has performed better than the naked eye: the cut
between segment “Untitled-7” and “Untitled-8” is almost
undetectible when the movie is viewed at normal speed, but
close examination and the Nagasaka-Tanaka algorithm reveal
the cut.

Using other knowledge of how video is sometimes structured,
we can detect even higher level boundaries, such as television
commercials (which can be characterized by scene changes
exactly 15, 30, or 60 seconds apart). We can also detect
common editing idioms: the expression (nagasaka-tanaka-
diff movie track time (next-cut movie track
time)) evaluates the visual continuity between the frames that
bracket a cut. A high degree of continuity suggests that the

editor is cutting back and forth between two video segments,
for example footage of two different characters speaking.

6. Conclusions

We have implemented a first prototype of VideoScheme. Our
short term goal is to evaluate the usefulness of our system on
some real-world editing tasks. We hope that this experience
will suggest new operations to implement in VideoScheme, and
clarify the limitations of the prototype.

In addition we plan to investigate new primitives, and thereby
to expand the range of functions that can be efficiently
implemented in VideoScheme. With these primitives we hope
to tackle even more complex algorithms, such as Nagasaka and
Tanaka’s object search algorithm, cut-classification
algorithms, and algorithms that edit the audio samples and
video frames to produce special effects.

We have seen that it is possible to achieve some of the results
of dedicated video authoring systems such as IMPACT in a
programmable editing system with a small number of special-
purpose video functions. Our VideoScheme system offers the
further advantage of flexibility: it is a simple matter to
experiment with new algorithms, and to build new operations
by combining previously written functions. These are the
classic advantages of programming, and we believe that we
have shown them to be equally valid in the domain of
interactive video editing.

We believe that VideoScheme is a unique attempt at achieving
the best of both worlds: the ease of use of direct manipulation
and the flexibility and expandability of an interpreted
programming language.

References

[1] DiVAVideoShop. DiVA Corporation. Cambridge, MA.

[2] Eisenberg, M. “Programmable Applications: Interpreter
Meets Interface.” MIT Artificial Intelligence Memo
1325, October 1991.

[3] Mackay, W. and Davenport, G. “Virtual Video Editing
in Interactive Multimedia Applications.”
Communications of the ACM, 32:7, July 1989.

[4] Nagasaka, A. and Tanaka, Y. “Automatic Video
Indexing and Full-Video Search for Object
Appearances.” IFIP Transactions A (Computer Science
and Technology), vol. A-7, 1992.

[5] Premiere. Adobe Systems Incorporated. Mountain View,
CA.

[6] QuickTime. Apple Computer, Inc. Cupertino, CA.

[7] SIOD (Scheme-in-one-Defun). Paradigm Associates, Inc.
Cambridge, MA.

[8] Ueda, H., Miyatake, T., and Yoshizawa, S. “IMPACT:
An Interactive Natural-Motion-Picture Dedicated
Multimedia Authoring System.” CHI’91 Conference
Proceedings, 1991.

