Lab: Evaluating Sentences of the Predicate Calculus in Finite Universes
CSC/MAT 208: Discrete Structures
Department of Computer Science
Department of Mathematics and Statistics
Grinnell College

Pairs

- Adam Hudson and Jacob Ekstrand
- Kathryn Yetter and Samee Zahid
- Ella Nicolson and Michael Owusu
- Thu Nguyen and Matt Jasaitis
- Muhammad Hamza and Marcel Champagne
- Bazil Mupisiri and Kevin Connors
- Anita DeWitt and Madeleine Goldman
- Amanda Hinchman-Dominguez and Lindsey Byrne
- Linda Oyolu and David Chang
- Jong Hoon Bae and Julia Fay
- Elizabeth Zak and Devin Dooley
- Danielle Williams and Adam Wesely
- Corey Simmonds and Tyler Williams

Dennis Chan will fill in for anyone who is absent.

Scheme representations of terms and statements

In the /home/stone/discrete/code/discrete directory on MathLAN, you will find three Scheme libraries that can be used to parse and evaluate terms and statements of the predicate calculus:

- predicate-scanner.sls,
- predicate-parser.sls, and
- predicate-evaluator.sls.
Exercise 0: Copy these three files into the discrete subdirectory of your Racket collections directory. The predicate-parser.sls file gives record definitions for the kinds of expressions that can occur in terms and statements of the predicate calculus. Read through these and acquaint yourself with the names of the constructors and accessors that they define.

The parser also provides and exports the parse procedure, which can be used to convert any string that represents a statement of the predicate calculus into a structured record of the appropriate statement type. In writing strings that represent statements beginning with quantifiers, take care to leave a space after the variable of quantification, thus:

"∀x P(x)"

Without the space, the parser would read the variable of quantification as xP and then be puzzled to find just (x), which is not a statement, afterwards. Inserting the space between x and P enables the parser to recognize them as separate identifiers.

Exercise 1: Use the parse procedure to parse the string ‘∃x R(x, c)’. What kind of a statement does parse return? How can one extract the inner, unquantified statement ‘R(x, c)’ from this record?

Assignments

Recall from the “Semantics of the Predicate Calculus” reading that an assignment to one or more statements in the predicate calculus supplies a denotation to each variable, function name, and predicate in those statements, all constructed from the values in a “universe of discourse.” For example, to construct an assignment for the statements ‘P(t, x)’ and ‘∃x R(x, c)’, we chose {red, blue, green} as our universe of discourse, and we selected the following denotations:

- ‘x’: red
- ‘c’: green
- ‘t’: the function f such that f(red) = blue, f(blue) = blue, and f(green) = red
- ‘P’: {⟨green⟩, ⟨blue⟩}
• ‘R: \{(\text{green}, \text{green}), (\text{green}, \text{red}), (\text{blue}, \text{blue}), (\text{red}, \text{blue}), (\text{red}, \text{green})\}

Of course, this is not the only possible assignment that can be constructed relative to this universe of discourse. (In fact, there are 995327 others.)

Exercise 2: Construct at least one more such assignment.

Representing Assignments

Now open the `predicate-evaluator.sls` library in a new DrRacket window. In it, you’ll find the definition of a record type called `assignment`, with four fields: `universe`, `variables`, `functions`, and `predicates`. The first field will contain a class of the values in the universe of discourse. (In our example, we would place the class containing the symbols `red`, `blue`, and `green` in this field when constructing the assignment record.)

The other three fields will be association lists — that is, lists of pairs in which the car of each pair is a “key” (in this case, a string representing a simple term, function name, or predicate name) and the cdr is a value associated with that key (in this case, the denotation of that name). These are like the association lists that we used in implementing the semantics of the propositional calculus in the lab on evaluating Boolean expressions, where the keys were characters representing Boolean variables and the associated values were Booleans. In predicate calculus, of course, the denotations for function names and predicates have more structure.

Having separate association lists for simple terms, function names, and predicate names will make lookups more efficient. At any point in its work, the evaluator will be able to determine from the structure of the statement that it is working on which of the three kinds of identifiers it needs a denotation for.

The denotation of a predicate, its *extension*, is supposed to be a class of sequences of values in the universe. We’ll use lists to represent sequences, so that the extension of a predicate is simply a class of lists of values in the universe. Thus, for instance, the denotation of ‘\(P\)’ in our example assignment would be represented by the class \{(\text{green}), (\text{blue})\} — a class of lists of length 1, reflecting the fact that the valence of ‘\(P\)’ is 1.

The data structure that represents the denotation of a function name is a relation, as defined in the `(discrete relations)` library. The relation must
be a functional one, as defined in the lab on functions — in the underlying class of pairs, no two pairs should have the same car.

In that lab, we assumed that all of our functions would apply to single arguments; we implemented a function as a relation in which the car of any member of the underlying class of pairs was the argument to the function and the corresponding cdr was the value. But in the predicate calculus, the valence of a function doesn’t have to be 1; it can be any natural number. In this setting, therefore, the car of any member of the underlying class of pairs should be a sequence of argument values, and the cdr should be the (single) value that the function yields when applied to the arguments listed in that sequence.

So, for instance, we might construct the denotation of a function mid of valence 2, in our universe of three colors, like this:

\[
\text{(make-relation (class (cons (list 'red 'red) 'red) }
\text{ (cons (list 'red 'blue) 'green) }
\text{ (cons (list 'green 'red) 'blue) }
\text{ (cons (list 'green 'green) 'green) }
\text{ (cons (list 'green 'blue) 'red) }
\text{ (cons (list 'blue 'red) 'green) }
\text{ (cons (list 'blue 'green) 'red) }
\text{ (cons (list 'blue 'blue) 'blue)))}
\]

Each call to \text{cons} takes a sequence of arguments and the value that the function should yield when given those arguments. (For instance, this function yields \text{green} when applied to the arguments \text{blue} and \text{red}.)

Exercise 3: How will we represent the denotation of ‘t’ in our example assignment?

Exercise 4: How will we represent the denotation of ‘R’ in our example assignment?

Exercise 5: Invoke the \text{make-assignment} procedure to construct our example assignment, giving it as arguments the values that it should place in its four fields. Invoke it again to construct the assignment that you described in the solution to exercise 2 above.
The Structure of the Evaluator

Reflecting the fact that an assignment in the predicate calculus associates values with terms as well as with statements, the evaluator is actually implemented as two procedures, evaluate-term to determine the denotations of terms and evaluate-statement to determine the truth-values of statements. The predicate-evaluator.sls file contains the complete definition of evaluate-term. Study this definition. How does it determine which member of the universe of discourse will be associated with a function term such as ‘t(t(x))’?

The predicate-evaluator.sls file also contains all the easy parts of the definition of evaluate-statement, but I’ve replaced the action part of some of the cond-clauses with (assert #f). The missing actions deal with two of the three kinds of statements that don’t correspond to anything in the propositional calculus: atomic statements, and statements beginning with ‘∃’.

Exercise 6: Remove the (assert #f) clauses, fill in the blanks to get a working evaluator, and try it out! As an initial test, confirm that the example assignment you built in exercise 5 above satisfies both the premiss ‘P(t(x))’ and the conclusion ‘∃x (R(x, c) → P(x))’ of the inference used as an example in the reading. What truth-values do these statements have in the other assignment you constructed exercise 2?

Hints: (1) Atomic statements are somewhat analogous to function terms, in the way that they evaluate their arguments. (2) Existential statements are analogous to universal ones. What is the semantic change needed?