At the suggestion of a student, I have compiled a list of the better-known theorems of the propositional calculus, supplying traditional names where I know them and descriptive ones in all other cases. In each case, I’ve actually presented the theorem as a schema: Every instance of each schema can be inferred without premisses in the propositional calculus.

- \((\bot \equiv \neg \top)\): analysis of falsehood
- \(((\phi \land \psi) \equiv (\psi \land \phi))\): commutativity of conjunction
- \(((\phi \land \psi) \land \chi) \equiv (\phi \land (\psi \land \chi))\): associativity of conjunction
- \(((\phi \land \phi) \equiv \phi)\): idempotence of conjunction
- \(((\phi \land \top) \equiv \phi)\): identity of conjunction
- \(((\phi \land \bot) \equiv \bot)\): zero of conjunction
- \(((\phi \lor \psi) \equiv (\psi \lor \phi))\): commutativity of disjunction
- \(((\phi \lor \psi) \lor \chi) \equiv (\phi \lor (\psi \lor \chi))\): associativity of disjunction
- \(((\phi \lor \psi) \equiv \phi)\): idempotence of disjunction
- \(((\phi \lor \bot) \equiv \phi)\): identity of disjunction
- \(((\phi \lor \top) \equiv \top)\): zero of disjunction
- \(((\phi \land (\psi \lor \chi)) \equiv ((\phi \land \psi) \lor (\phi \land \chi))\): distributivity of conjunction over disjunction
- \(((\phi \lor (\psi \land \chi)) \equiv ((\phi \lor \psi) \land (\phi \lor \chi))\): distributivity of disjunction over conjunction
- \(((\phi \lor (\phi \land \psi)) \equiv \phi)\): disjunct absorption in conjunction
- \(((\phi \lor (\phi \land \psi)) \equiv \phi)\): conjunct absorption in disjunction
- \(((\phi \land (\neg \phi \lor \psi)) \equiv (\phi \land \psi))\): negated disjunct drop
• \(((\phi \lor (\neg \phi \land \psi)) \equiv (\phi \lor \psi))\): negated conjunct drop
• \((- (\phi \land \psi) \equiv (- (\phi \lor \neg \psi))\): DeMorgan’s law, disjunction
• \((- (\phi \lor \psi) \equiv (- \phi \land \neg \psi))\): DeMorgan’s law, conjunction
• \((\phi \rightarrow \phi)\): reflexivity of implication
• \(((\phi \rightarrow \psi) \land (\psi \rightarrow \chi)) \rightarrow (\phi \rightarrow \chi))\): transitivity of implication
• \((\top \rightarrow \phi) \equiv \phi\): left identity of implication
• \(((\phi \rightarrow \top) \equiv \top\): right zero of implication
• \((\bot \rightarrow \phi) \equiv \top\): vacuous implication
• \(((\phi \rightarrow \bot) \equiv \neg \phi\): refutation
• \(((\phi \rightarrow \psi) \equiv (\neg \phi \lor \psi))\): analysis of implication
• \(((\phi \rightarrow \psi) \equiv (\neg \phi \rightarrow \psi))\): contraposition
• \(((\phi \rightarrow \psi) \equiv (\neg \phi \rightarrow \psi) \land \neg \phi \lor \psi))\): case analysis
• \(((\phi \rightarrow \psi) \equiv ((\phi \lor \psi) \equiv \psi))\): implication as disjunctive absorption
• \(((\phi \rightarrow \psi) \equiv ((\phi \land \psi) \equiv \phi))\): implication as conjunctive absorption
• \(((\phi \land \psi) \rightarrow \chi) \equiv (\phi \rightarrow (\psi \rightarrow \chi))\): shunting
• \((\phi \equiv \phi)\): reflexivity of equivalence
• \(((\phi \equiv \top) \equiv \phi)\): identity of equivalence
• \(((\phi \equiv \psi) \equiv (\psi \equiv \phi))\): commutativity of equivalence
• \(((\phi \equiv \psi) \equiv \chi) \equiv (\phi \equiv (\psi \equiv \chi))\): associativity of equivalence
• \(((\phi \equiv \psi) \land (\psi \equiv \chi)) \rightarrow (\phi \equiv \chi))\): transitivity of equivalence
• \((- (\phi \equiv \psi) \equiv (- \phi \equiv \psi))\): distributivity of negation over equivalence
• \((- (\phi \equiv \psi) \equiv (\phi \equiv \neg \psi))\): split negation equivalence
• \(((\phi \lor (\psi \equiv \chi)) \equiv ((\phi \lor \psi) \equiv (\phi \lor \chi))\): distributivity of disjunction over equivalence
• \(((\phi \equiv \psi) \equiv (\phi \land \psi) \lor (\neg \phi \land \neg \psi))\): analysis of equivalence
• $(((\phi \rightarrow \psi) \land (\psi \rightarrow \phi)) \equiv (\phi \equiv \psi))$: equivalence as mutual implication

• $(((\phi \land \psi) \equiv (\phi \lor \psi)) \equiv (\phi \equiv \psi))$: the golden rule

• $(\neg \phi \equiv (\phi \equiv \bot))$: negation as equivalence to falsehood
Exercises

1. Choose any of the theorem schemes above and prove every instance of it (by constructing a proof scheme).

2. Many of these theorems can be restated as derived rules of inference, in which one side of an equivalence is taken as a premiss and the other side as the conclusion, or the protasis of an implication is taken as a premiss and the apodosis as the conclusion. Is every derived rule of inference that is constructed in this way valid as a mode of deductive reasoning? Could any of them ever lead from a true premiss to a false conclusion? Justify your answer.