Exercise set #3: Relations and Functions

CSC/MAT 208: Discrete Structures
Department of Computer Science
Department of Mathematics and Statistics
Grinnell College

These exercises will be due at the beginning of class on Monday, April 25. Please submit your answers in legible hard-copy form. You may use any of the (discrete ...) libraries developed for this course if you wish (with appropriate acknowledgement).

Exercise 3.0: Let’s say that a relation R is targeted if there is at least one thing x such that everything bears R to x. (So, for example, in the universe of natural numbers, the greater-than-or-equal-to relation is targeted, because every natural number is greater than or equal to zero; but the less-than relation is not targeted, because there is no natural number than which every natural number is less.) Express this property of relations as a statement in the predicate calculus.

Exercise 3.1: Let’s say that a relation R is applicable if its left domain is the entire universe of discourse, so that each thing x in the universe bears R to something or other. (So, for example, in the universe of natural numbers, the greater-than relation is not applicable, because zero is not greater than any natural number, but the less-than relation is applicable. Similarly, the relation that a number bears to its square is applicable in the universe of natural numbers (every natural number has a square), but the converse relation is not applicable. Express this property of relations as a statement in the predicate calculus.

Exercise 3.2: Write Scheme procedures targeted? and applicable? to implement the properties of relations described in the preceding exercises. In each case, the procedure should take two arguments: a relation and the universe of discourse (a class) within which that relation is being considered.

Exercise 3.3: Prove that, if a relation R is targeted and a relation S is applicable, then $R \circ S$ is targeted.

Exercise 3.4: Using the axioms and rules of inference of the predicate calculus, provide a formal proof of the implication stated in the preceding exercise (translated into the predicate calculus as in exercises 3.0 and 3.1).