Assigned: Monday 22 January

Due: Monday 29 January 11:59 pm

Objectives:

- Reinforce Scheme basics
- Recall how to write recursive procedures over lists and numbers using named let and tail recursion
- Explore clever uses of higher-order procedures

Collaboration: This homework assignment must be completed individually.

A common problem in the AI subfield of machine learning is to do regression on a set of points. That is, assume points are observations from some unknown function, and we wish to infer the function so that we may make predictions by interpolating between these points.\(^1\) One approach to this problem is to model the unknown function as a polynomial, which means one must determine the coefficients. In this assignment, we'll develop some useful Scheme functions for defining and evaluating "encapsulated" polynomials.

Preparation

1. Open DrRacket, which will be our Scheme-based development environment for the course.

2. Set your language preference to "Pretty Big" as follows:

 (a) Click on the “Langage” menu and select “Choose Language...”
 (b) Click “Pretty Big” under the Legacy Languages heading of “Other Languages”
 (c) Click OK.
 (d) Click Run.

Assignment

Recall that map, along with many other useful Scheme habits often benefit from a technique called sectioning, which fixes one parameter of a binary (two-argument) procedure. For example, left-section takes a procedure and the first argument to that procedure, and returns another procedure that accepts the second (right) argument, with the operation and first (left) argument fixed.

```
(define left-section
  (lambda (proc left)
    (lambda (right)
      (proc left right)))))
```

1. Write the companion procedure right-section.

2. In addition to producing procedures as return values (as left-section and compose do), we can also use procedures as parameters (as in map). Recall that (apply proc args) is also in this second category. Using map and apply, write a procedure (dot-product v1 v2) that takes two lists of numbers having the same length and produces their dot product, that is, the sum of the products of the corresponding entries in v1 and v2. For example,

\(^1\)For example, see AIMA section 18.2, pp. 695–697, or https://en.wikipedia.org/wiki/Kriging.
> (dot-product (list 1 2 3) (list 4 5 6)) ; 1*4 + 2*5 + 3*6
32

3. Using named let\(^2\) and tail recursion\(^3\) write the procedure (iota num) that produces the list of numbers from 0 to num – 1 in order. For example,

> (iota 5)
(0 1 2 3 4)

Your solution must not call reverse; if your original attempt produces results in the wrong order, you must think about building the result in the opposite order.

4. Write a procedure, (polynomial-term c n) that returns the function \(f(x) = c \cdot x^n\).

> (define two-x-cubed (polynomial-term 2 3))
> (two-x-cubed 1) ; 2 * 1 * 1 * 1
2
> (two-x-cubed 3) ; 2 * 3 * 3 * 3
54
> (define three-x-squared (polynomial-term 3 2))
> (three-x-squared 1) ; 3 * 1 * 1
3
> (three-x-squared 5) ; 3 * 5 * 5
75
> ((polynomial-term 5 4) 2) ; 5 * 2^4
80

5. Write a procedure (polynomial coeffs) that takes a list of coefficients for the terms \(x^0, x^1, x^2, \ldots\) of a polynomial and produces a function that takes a single value, evaluating the polynomial given those coefficients at that value.

; Create the polynomial \(f(x) = 1\cdot x^0 + 4\cdot x^1 = 1 + 4\cdot x\)
> (define line (polynomial (list 1 4)))
> (line 5) ; Evaluate \(f(5) = 1 + 4\cdot 5\)
21
; Create the polynomial \(g(x) = 1 + 4\cdot x + 3\cdot x^2 - 2\cdot x^3\)
> (define cubic (polynomial (list 1 4 3 -2)))
> (cubic 5) ; Evaluate \(g(5) = 1 + 4\cdot 5 + 3\cdot 5^2 - 2\cdot 5^3\)
-154

Note: Make your solution as concise as possible and do not (explicitly) use recursion; existing helpers may use recursion.

6. Recall that the derivative of a polynomial-term may be given by \(\frac{d}{dx}c \cdot x^n = c \cdot n \cdot x^{n-1}\). Write a procedure (polynomial-derivative-coeffs coeffs) that takes a list of coefficients and produces a list of coefficients of polynomial’s derivative.

> (polynomial-derivative-coeffs (list 1 4 3 -2))
(4 6 -6)

\(^2\)If you’ve forgotten how to write a named let, see, e.g., Dyvbig, *Recursion and Iteration*

\(^3\)If you’ve forgotten about tail recursion, see e.g., Davis et al. *Helper Recursion*,
7. It can often be tedious to manually compose the same function with itself several times. Often, we do not know in advance how many times a procedure should be applied.

Write a new procedure, `nest` that takes two parameters, a unary procedure f and an integer n. The value produced is a new procedure that results from composing together n copies of f.

Note that n must be at least 1 for `nest` to make sense.

```scheme
> (define l-s left-section)
> (define plus5 (nest (l-s + 1) 5))
> (plus5 6)
11
> (define duplicate (lambda (val n) ((nest (l-s cons val) n) null)))
> (duplicate "hello" 5)
("hello" "hello" "hello" "hello" "hello")
> (define second-derivative (nest polynomial-derivative-coeffs 2))
> (second-derivative (list 1 4 3 -2))
(6 -12)
```

8. Write a procedure `(polynomial-deriv coeffs n)` that takes a list of polynomial coefficients `coeffs` and a strictly positive integer `n` and produces a procedure that takes a single value and evaluates the nth derivative of the polynomial with the given coefficients at that value.

```scheme
> (define d2/dx2-cubic (polynomial-deriv (list 1 4 3 -2) 2))
> (d2/dx2-cubic 5)
-54
```

9. Write a procedure `(non-zero-coefficients coeffs)` that takes a list of coefficients for the terms $x^0, x^1, x^2, ...$ of a polynomial with terms $c_n \cdot x^n$ and produces the values of n (in ascending order) for which $c_n \neq 0$.

```scheme
> (non-zero-coefficients (list 1 4 0 -2))
(0 1 3)
> (non-zero-coefficients (polynomial-derivative-coeffs (list 1 4 0 -2)))
(0 2)
```

What to turn in

In addition to `references.txt`, your submission should include the following:

- `polynomial.scm`, your completed implementation of all procedures above
- `test-polynomial.scm`, a separate driver program that demonstrates your procedures are correct (use examples other than those provided); use `(load "polynomial.scm")` to access the other file’s procedures
- A transcript `output.txt` file of your driver program’s output

Acknowledgements

Problems 4 and 5 are adapted from S. Rebelsky and J. Weinman, *Exam 3: Sophisticated Scheming*, CSC151 2010S. Problem 7 is adapted from J. Davis and J. Weinman, *Exam 3: Sophisticated Scheming*, CSC151 2011S.