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Abstract—Given stereo or egomotion image pairs, a popular
and successful method for unsupervised learning of monocular
depth estimation is to measure the quality of image reconstruc-
tions resulting from the learned depth predictions. Continued
research has improved the overall approach in recent years,
yet the common framework still suffers from several impor-
tant limitations, particularly when dealing with points occluded
after transformation to a novel viewpoint. While prior work
has addressed the problem heuristically, this paper introduces
a z-buffering algorithm that correctly and efficiently handles
occluded points. Because our algorithm is implemented with
operators typical of machine learning libraries, it can be in-
corporated into any existing unsupervised depth learning frame-
work with automatic support for differentiation. Additionally,
because points having negative depth after transformation often
signify erroneously shallow depth predictions, we introduce a
loss function to explicitly penalize this undesirable behavior.
Experimental results on the KITTI data set show that the z-
buffer and negative depth loss both improve the performance of
a state of the art depth-prediction network. The code is avail-
able at https://github.com/arthurhero/ZbuffDepth and archived
at https://hdl.handle.net/11084/10450.

I. INTRODUCTION
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With the advent of deep neural networks and large, real-
world data sets, it has become possible to learn models that
estimate depth from a single image with remarkable accuracy.
The common framework for learning to predict depth from
a single image involves training on image pairs of a scene
with known relative camera positions, either from stereo or
egomotion. Models can be trained in a self-supervised fashion
(meaning there is no ground truth depth signal) by using one
image and the predicted depth to reconstruct the view in the
other image. The training should bring the reconstructed image
and the true image into agreement.

To facilitate the process, the scene projection from one
image is inverted to generate a 3D point cloud, each point
being associated with a pixel in the original image. This point
cloud is then transformed (by translation and rotation) to the
coordinate system of another viewpoint and finally reprojected
to synthesize the image of the second view. (See Figure 2.)

The quality of the depth prediction is measured indirectly
by comparing the pixels in the reconstructed image to the cor-
responding pixels in the actual image. If the depth prediction
is correct, the two sets of pixels should be similar, despite

Fig. 1. Comparison of depth prediction results with (second row) and without
(third row) a z-buffer in the self-supervised training pipeline. Differences
are most pronounced at large depth boundaries where occlusions are most
prominent. (Images from the KITTI [1] Eigen test split.)

changes in lighting or viewing angle. Stereo image pairs [2],
[3] and video sequences [4], [5], [6], [7] are usually used as
the signal source. Common evaluation benchmarks for this
task include KITTI [1] and Cityscapes [8].

Several problems can occur during the viewpoint transfor-
mation phase of this training paradigm. First and foremost,
after the viewing angle is rotated some visible points become
occluded because two points project onto the same pixel in the
second image (cf. Figure 4). For correct image reconstruction,
we need to render only the point closest to the image plane;
any other point is occluded by the closest point and thus
invisible from the second camera’s viewpoint. The z-buffer,
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Fig. 2. Overview of our training method under the image reconstruction depth-learning paradigm, with contributions highlighted. Here we use a video sequence
with known egomotion as the signal source. X stands for images, D for depth map, P for point cloud, R is projected (registered) point cloud. Superscript t
denotes the image sequence number.

or depth buffer, is a computer graphics workhorse created to
solve precisely this problem.

The occlusion problem has only been indirectly addressed
by previous work in learning monocular depth estimation.
Godard et al. [9] propose a minimum reprojection loss, and
Gordon et al. [10] propose a minimum depth consistency filter
to simulate a z-buffer. However, the former solution requires
multiple source images and is not guaranteed to eliminate
the error, while the latter is still only a heuristic method
that can incur both false positives and false negatives. Using
a z-buffer to solve the occlusion problem is conceptually
easy but challenging to implement, in that it may be non-
trivial to parallelize. Without caution, the resulting algorithm
might become a training bottleneck. We propose an efficient,
parallel approach (implemented in PyTorch) to address the
occlusion problem, which can hamper performance around
depth discontinuities, as shown in Figure 1. Our method is
exact (i.e., does not rely on any heuristics) and can be easily
incorporated into any self-supervised learning framework that
relies on reprojection.

Another issue that might be fatal for networks trained from
scratch is transformed points with negative depth. Having
negative depth means that the points are behind the image
plane and thus should not be associated with any pixels in the
second image. Therefore, they are sure to be excluded from the
image reconstruction loss. However, during the initial phase of
our training, when the depth prediction is not very accurate, we
found that often many points would get abnormally shallow
depth and hence negative depth (i.e., behind the image plane)
after transformation. Excluding all of those points will make
learning inefficient. Most of these points should not in fact
have negative depth if they can still be projected to a pixel
within the second image boundary. We therefore introduce a
simple loss function to penalize such negative depths.

Experimental evaluation (Section IV-C) demonstrates the
importance of these techniques using ablation studies, as well
as comparison with previous methods. We also show that the
best timing for inserting the z-buffer into the training process

is not at the beginning, but after an initial training phase.
In summary, our primary contributions include:
• we confirm that proper z-buffering improves depth esti-

mates for reprojection-based training methods,
• we provide an efficient z-buffering algorithm compatible

with differentiable deep learning systems, and
• we propose a loss penalizing erroneously shallow (i.e.,

negative) depth, which also improves performance.
In Section II we situate this work in the context of related

works, while Section III details our approach. Section IV
provides an experimental evaluation of the proposed methods.

II. RELATED WORKS

A. Supervised Monocular Depth Estimation

Historically, estimating depth from a single image involved
using hand-crafted features or geometric constraints [11].
The accuracy of those methods often depended on hand-
crafted features, which can yield unsatisfactory performance
on various scenes if the chosen features are not optimal. Sub-
sequently, research has shifted toward learning-based methods.

Depth estimation using deep convolutional neural networks
(DCNNs) has followed on the success of DCNNs in many
computer vision tasks such as image classification [12] and
image segmentation [13]. Eigen et al. [14] first proposed a
multi-scale architecture with both a local and global network
to generate a refined, high-resolution depth map from lower-
resolution depth maps. Their work treats the depth estimation
task as a regression problem by minimizing the total pixel-wise
error between the network output and the ground-truth depth.
Laina et al. [15] introduced a fully convolutional network with
a residual-connected encoder and upsampling block to increase
spatial resolution of the predicted depth map. Liu et al. [16]
presented a spatial propagation network for predicting an
affinity matrix; Chen et al. [17] subsequently applied the
network to the depth estimation task, which increased the
resolution of sparse ground truth depth maps.

To incorporate multi-scale information and high-resolution
depth maps, many works adopt a U-net-like architecture with



skip connections between encoder and decoder [13]. With
the general success of the encoder-decoder architecture, many
improvements have been made, such as substituting the en-
coder with pre-trained networks [18] and enforcing a planar
constraint on local patches of the predicted depth output [19].

B. Unsupervised Monocular Depth Estimation

While supervised methods usually offer depth estimations
with higher accuracy, the ground truth depth maps used
in supervised depth estimation are often subject to spatial
inaccuracy due to calibration error and instrument error. In
addition, ground truth depth measurements, arising from 3D
LiDARs, are usually quite sparse. Therefore, recent research
has introduced depth estimation network architectures that
learn without depth as an explicit training signal. In this
case, the models use image reconstruction as the supervisory
signal during the training stage, as described in Section I.
The model training process usually takes a temporal series
of monocular images and/or pairs of stereo images as input;
learning proceeds by enforcing the consistency between an
observed image and an image from an alternate viewpoint as
reconstructed from the depth prediction (as in Figure 2).

Garg et al. [2] proposed the first such unsupervised depth
estimation network to achieve performance comparable to
supervised networks. It uses an encoder-decoder structure to
produce a depth for the left image of the stereo image pair
and subsequently utilizes the estimated depth of left image,
inter-view displacement and the right image to synthesize the
left viewpoint. Then, the reconstruction error between the left
image and the synthesized left image is used as the training
signal for the network. Using a monocular video sequence
with egomotion instead of a stereo image pair, Zhou et al. [4]
trained a depth estimation network simultaneously with an
explainability mask and a pose network. The explainability
mask then addresses the occlusion problem by excluding
pixels for which the network has low confidence in its depth
predictions.

Broadening what is considered for self-consistency, Go-
dard et al. [3] proposed a network that enforces the left-to-right
and right-to-left consistency with smoothness, reconstruction,
and left-right disparity losses. Mahjourian et al. [5] presented
a network with a video input sequence that enforces 3D geom-
etry consistency within the sequence by estimating egomotion.
Godard et al. [9] improved their previous architecture [3] by
using both the stereo image pair and temporal video sequences
as training signals.

Most top-performing unsupervised methods learn to predict
depth by enforcing the consistency between actual observa-
tions and images reconstructed from depth estimates. Another
novel approach by Guizilini et al. [7] introduced a velocity
supervision loss to solve the scale ambiguity in self-supervised
depth estimation networks. Luo et al. [20] incorporated a
GAN architecture, training the model to synthesize the al-
ternate viewpoint’s image and directly calculate depth from
the original image and the synthesized image. Because the
reconstructed image is not produced by inferring projective

geometry, GAN-based methods have no direct need for the
occlusion handling methods we propose.

C. Occlusion Handling in Reprojection

When the loss functions used for training involve photomet-
ric agreement between a reconstruction and an actual image,
accurate renderings will be important. As indicated previously,
most early works used all points in the loss function, even if
they were occluded in one of the image pairs [3], [5].

More recent work has taken occlusions into account with
attempts to mitigate the issue. When two points project to the
same pixel, CalibNet by Iyer et al. [21] arbitrarily selected
only one to contribute to the loss, even though it may be the
occluded point. Monodepth2 by Godard et al. [9] incorporated
a minimum reprojection loss that requires multiple source
images. This method assumes that a point occluded in one
of the source images might be still visible in others. The
images where occlusion happened will likely render higher re-
construction loss due to the erroneously matched pixels. Thus,
for each pixel in the original image, Monodepth2 uses only
the smallest reconstruction loss from several source images,
where occlusion is least likely to have happened. However,
this is not applicable when we only have a pair of images (thus
only one source image available), as in stereo methods. More
importantly, lower loss does not guarantee that the chosen
source pixel is visible. PackNet-SfM by Guizilini et al. [7]
also adopted this approach.

Gordon et al. [10] proposed a minimum depth consistency
filter to simulate a z-buffer. Using the predicted depth from
frame A as a reference, when points from frame B are
transformed to coordinate frame A, any point “behind” (having
greater depth than) the predicted depth will be excluded
from the loss calculation. This heuristic method to eliminate
occluded points is sensitive to the model’s prediction accuracy,
which itself is the learning goal.

We propose using a z-buffer to directly address pixel occlu-
sions in the image reconstruction process. Although concep-
tually easy, it is not “embarrassingly parallel” where multiple
points compete for rendering to the same raster location. How-
ever, efficiency is not the only concern. Because the z-buffer
contents depend on the very depth prediction process being
learned, it is likewise potentially sensitive to model accuracy.
At the early stages of training, most depth predictions are
inaccurate, and thus points may appear occluded due to the
prediction error rather than the true scene geometry. Excluding
these points from the loss calculation might hamper learning.
On the other hand, if we utilize the z-buffer too late, the
model might have already mis-fit, so that the z-buffer might
not help or else would require additional training epochs.
Our experiments will demonstrate there is indeed an optimal
middle-ground for including the z-buffer.

In theory, any unsupervised method using image repro-
jection should benefit from incorporating our methods. Our
experiments confirm that the performance of an existing model
can indeed be further improved by incorporating the method.



D. Z-Buffer Algorithms

With the z-buffer’s longstanding history in computer graph-
ics [22], this work is not the first to demand an efficient algo-
rithm. For graphics rendering, the computation is nearly uni-
versally implemented almost entirely in hardware. However,
to be used within a deep learning pipeline, the computation
must also produce derivatives, which are not readily available
in existing hardware and APIs.

A serial algorithm would calculate a projected pixel coordi-
nate for each 3D point. If another point is already stored at that
coordinate, the algorithm compares their depths and retains
only the point with smaller depth value. In a highly parallelized
deep learning pipeline, the speed bottleneck created by such
a serial algorithm proves unacceptable.

Work on parallelizing the z-buffer algorithm is nearly as old
as the algorithm itself [23]. We provide a few highlights. Forty
years ago, Parke [24] investigated three algorithms distributing
the “scan conversion” task (i.e., perspective projection) among
parallel processors with a distributed z-buffer.

Li and Miguet [25] proposed two complementary parallel
z-buffer algorithms for a distributed memory transputer. They
note that a naı̈ve approach would distribute all scene points to
each processor, while dividing the rendering task (portions of
the reconstructed image) among processors. To handle large
point clouds, their two algorithms examine either the case
when scene elements are statically mapped to a processor,
with each process potentially contributing to any rendered
pixel, or else the case when scene elements are “dynamically
redistributed” among a ring of processors. The first approach
requires a (tree-shaped) reduction familiar to modern GPU
programmers, with a conditional in the merge that checks
for the lower z value. Motivated by memory limitations, the
second approach distributes work and memory demands by
dividing the image into regions and cycling subsets of points
through each region for processing and merging.

Renaud [26] similarly concentrated on the difficulty of
distributing scene elements to the image regions onto which
they project and subsequently balancing the load among SIMD
processing elements. Like Li and Miguet, Shen et al. [27] also
focused on efficiently merging depths from different objects
for the same pixels on a PRAM machine.

Rather than focus on the merge step (which introduces con-
ditionals that lower SIMD throughput), our approach admits
a race condition among scene elements mapped to the many
SIMD processors of modern GPUs. It then iteratively identifies
points occluded points that incorrectly won the race. The
method (cf. Section III-D) is implementable in modern GPU-
based machine-learning libraries, allowing its use in gradient
descent frameworks.

The PyTorch3D library [28] offers a differentiable z-buffer
for rendering polygon meshes, rather than the point clouds
required for this problem. It uses a custom CUDA kernel with
atomic instructions, whereas our method is easily expressed
in higher-level parallelized primitives of multiple machine
learning libraries.

III. METHOD

In this section, we define the background terms and nota-
tion before describing our overarching training method. We
then detail solutions to several issues that occur during the
point cloud transformation phase of the self-supervised depth
learning paradigm, as introduced in Sections I and II.

A. Definitions

In this paper, the notation font for tensors is A, for matrices
is A, and for scalars is A. The variables used in our training
method include X ∈ R3×h×w for RGB images, D ∈ R1×h×w

for depth images, P ∈ R3×n for point clouds, R ∈ R3×h×w for
point cloud registration (explained below), E for the relative
position matrix between cameras, and Mproj for the projection
matrix (i.e., the camera intrinsic matrix).

Image sequence number is indicated using superscripts (e.g.,
Xt, Pt+1), and pixel location is indicated using subscripts (e.g.,
Xi,j , Ri,j).

The point cloud registration R is a tensor such that Ri,j is
the (x, y, z) coordinates of the point in 3D space correspond-
ing to the pixel at location (i, j) in image X.

The `1 loss (sum of absolute values) is denoted ‖ · ‖1.

B. Basic Model

Our overarching training method uses image reconstruction
(Figure 2), combined with point cloud matching. We first
take two images Xt and Xt+1, with their relative position Et

known. For stereo data, the images are “left” and “right” pairs
with a temporally invariant relative position E, but the t, t+1
sequence applies more generally to egomotion sequences as
well. We train a model to predict depth Dt and Dt+1 for each
of the images and use the known camera intrinsic matrix to
inverse project the depths to point clouds Pt and Pt+1. We then
transform the point clouds to each other’s relative position.
Using the matrix Et we have

P̂
t
, EtPt+1. (1)

(Et is invertible, allowing for the reverse process.) Finally, we
project these transformed point clouds onto the image plane,
get the resulting pixel coordinates for each point, and sample
the pixel color from the other image (i.e., Xt+1) to reconstruct
the original image from the other viewpoint (i.e., X̂

t
).

Although the following loss functions are all written from
one image to another, both directions are included in the total
loss during training.

A simple point cloud matching loss [3]

Lpoint = ‖R̂
t
− Rt‖1 (2)

ensures the consistency of point clouds predicted for continu-
ous image frames, where Rt is the original registration tensor
simply reshaped from Pt. That is, R̂

t
stores the points from

P̂
t

that are registered to the pixel locations in Xt using the
z-buffering algorithm introduced in Section III-D.

An image reconstruction loss [4], [2]

Limage = ‖X̂
t
− Xt‖1 (3)



Fig. 3. Improbability of negative depth. It is highly unlikely for points visible
to camera 1 to be in frame but have negative depth with respect to camera
2 (i.e., to appear in the grey area of camera 2). With egomotion, such points
need to be squeezed between the two cameras (inside the little shaded diamond
area in the right figure), which is extremely unlikely to happen in data sets
like KITTI [1].

ensures the similarity between the original image and the
reconstructed image from the transformed point cloud. We
also include the Structured Similarity (SSIM) Loss used in
Godard et al. [3] and Mahjourian et al. [5]:

LSSIM =
∑
p

1− SSIM(X̂
t

p,X
t
p), (4)

where Xp here represents a 3 × 3 image patch. Our overall
loss function is

Ltotal = λ1Lpoint + λ2Limage + λ3LSSIM + λ4Lnd, (5)

where Lnd denotes the “negative depth loss,” detailed below in
Section III-C. Section IV-B lists the specific relative weights
λi and other hyperparameter details.

C. Negative In-frame Depth

After a point cloud has been transformed to another view-
point and reprojected, some points might fall behind the image
plane, resulting in a negative depth. Stereo pairs or video
sequences have relatively close viewpoints. Thus it is highly
unlikely that a point originally projecting to the center of the
first image will become invisible in the second image (see
Figure 3). When negative depth predictions occur, they signify
that the model is producing abnormally or inappropriately
shallow depth values.

Let N be the set of points with negative depths that remain
within the image boundary after transformation and projection:

N , {(i, j) | (di,j < 0) ∧ (0 ≤ i < w) ∧ (0 ≤ j < h)} , (6)

where (i, j) is the image coordinate of a point, and di,j is the
depth of the point. Our loss term penalizes such points:

Lnd =
∑

(i,j)∈N

|di,j | . (7)

We observe that it is not meaningful to include the in-
frame, negative-depth points of N in the loss calculations for

Fig. 4. The occlusion problem: two points in space projecting to different
pixels in the original image might be projected to the same pixel on another
image. Pixel 1 should not be used to match pixel 3 in the image reconstruction
loss.

Lpoint (equation 2), Limage (equation 3), and LSSIM (equation 4).
We are not aware of prior work that filters these points from
the calculations (and thus from learning). In our experiments
below, when accounting for negative in-frame depth we also
exclude points in N from all losses except Lnd, equation 7.
We found these conditions to improve performance.

We also found that this loss is particularly helpful during
the initial phase of the unsupervised training, especially when
the encoder is not pre-trained. If the network tends to predict
erroneously shallow depth at the beginning, this loss can help
push the depth value toward the correct range. If we do not
penalize this erroneous negative depth, but instead only mask
them out, then most all the points are discarded and the
network is unable to learn.

D. Efficient Z-buffering

Both the Lpoint loss and the Limage loss of equation 5 require
the correspondence of pixels between two images. As Figure 4
shows, an occluded point in one frame should not correspond
to any point in the other frame. Occlusion happens after
the point cloud transformation phase because some points
inevitably “overlap” with each other by projecting onto the
same pixel in the second image. In these cases, we need to
choose the point closer to the image plane, as it is the point
associated with the visible pixel.

To fundamentally solve the issue, we need to identify the
point closer to the image plane when occlusion occurs. In-
spired by the z-buffer (or depth buffer) concept from computer
graphics, our method achieves efficient processing for all
points using parallel computing (cf. Section II-D). We explain
Algorithm 1 below. By implementing it in PyTorch, we easily
access its differentiable, parallelized operators.

Given a set of points from frame A, we transform them
into coordinate frame B. The transformed depth D has shape
1 × h × w. We vectorize it to 1 × N and calculate the
corresponding (i, j) pixel coordinates C ∈ R2×N on image
B for all the points using the camera intrinsic matrix. We



Algorithm 1: Parallel z-buffering algorithm.
Input : D: 1×N , reprojected point depths

K: 1×N , point raster absolute indices
Output: V, indices for points that should be included

in the loss.
1 initialize empty Z, same size as D // Z- buffer
2 Dorig ← D
3 Korig ← K
4 repeat

// Parallel write; race condition
5 Z[K[p]]← D[p], for all 0 ≤ p < |D|
6 create T, same size as D

// Parallel read of assigned depths
7 T[p]← Z[K[p]], for all 0 ≤ p < |D|

// Find occluded points in Z-buffer
8 U← {p | D[j] < T[p]} // Parallel compare
9 if |U| 6= 0 then

10 D← D[U] // "Contract" to nearer
11 K← K[U] // points NOT in Z-buffer
12 end
13 until |U| = 0;
14 create T, same size as Dorig
15 T[p]← Z[Korig[p]] for all 0 ≤ p < N
16 V← {p | Dorig[p] = T[p]} // Visible points

employ the “principled mask” [5] to discard the points that
fall out of the image frame: masking out the points where the
i (j, resp.) are larger than h− 1 (w− 1, resp.) or smaller than
0. We also discard points in N , which are within the image
frame but have negative depth values (cf. Section III-C).

For each point that remains, we calculate the “absolute
indices” K (1×N ) using the coordinate values from C,

k , j × w + i. (8)

Thus, points projecting to the same pixel location have the
same absolute index.

Let Z of shape 1×N be a tensor to store the correct (visible)
depth at each pixel location. Now we assign the elements of D
into Z using absolute indices K (line 5 in Algorithm 1). When
multiple points project to the same pixel, this operation results
in a race condition; we will not know whether the assigned
point is visible. This approach stands somewhat in contrast
to the prior work reviewed in Section II-D, which carefully
folds competing points through conditional assignments. In
our algorithm, to compare the values stored in the z-buffer Z
with the original depths D, we fetch back depth values from
Z to a temporary tensor T (line 7), inverting the assignment.
Then we simply compare the values in D and T to retain only
points with a smaller depth value than stored in T (line 8).
Having selected only those points from D and K, we repeat
the process (overwriting occluded points in the z-buffer) until
there is no difference between D and T.

During our experiments, this process iterates three or four
times before all the correct depth values are stored, with only

a few points left in the third or fourth rounds.
Finally, we use the correct Z tensor and compare it with the

original D tensor. The positions where the two values are the
same indicate the points that should be included in our losses.

Note the length of U becomes strictly smaller with each
iteration. With a finite number of points, the algorithm is
guaranteed to terminate. With this method, we can quickly
process all points in parallel, with the iteration limit being the
maximum number of occluding points along a ray.

Because all the operations in the algorithm can be imple-
mented with PyTorch tensor methods, the GPU parallelization
is straightforward. Moreover, the implementation gains the
necessary benefit of providing the derivatives for the learning
pipeline. For example, the assignment of line 5 in Algorithm 1
is implemented in PyTorch using Tensor.index_copy
(or Tensorflow tf.scatter_nd), while the read out
of lines 7 and 15 use Tensor.index_select (or
tf.gather_nd). Lines 8 and 16 also employ SIMD-parallel
comparators followed by select/gather.

IV. EXPERIMENTS

This section describes the results of our model on standard
data sets, comparing against other recent state of the art
works and demonstrating the performance improvements of
our approach.

A. Data Set

For all training and evaluation we use the KITTI data set [1]
with the Eigen [14] training split.

For validation, we sample a random subset of size 500 from
the Eigen validation split before training starts. After every 200
steps, we evaluate the model on the validation set, preserving
the best model checkpoint so far (using the δ < 1.25 metric).

Finally, for evaluation, we use the standard Eigen [14] test
split, which contains 697 samples in total. The ground-truth
depth is calculated from the laser point clouds provided by
KITTI. The depths are capped at 80 meters; that is, points
with ground truth depth exceeding the cap are excluded from
test evaluations. We use the crop standard of Garg et al. [2],
cropping away the upper half of the image and some boundary
parts to avoid comparing with inaccurate ground-truth. We
evaluate on the best checkpoint identified during training using
the validation set.

B. Model Implementation and Training Details

For the depth prediction model, we use the “big-to-
small” multi-scale local planar guidance architecture of
Lee et al. [19]; the encoder is ResNet-50 [12], pre-trained
on ImageNet [29], with all weights adjusted during training.

We train for 20 epochs with a batch size of 3 using the
Adam optimizer (β1 = 0.9, β2 = 0.999) and a learning rate
of 1E–05.

The images in the KITTI data set vary somewhat in size.
To compensate, we crop all training images to 352 × 1216,
aligning the upper-left corner.

We augment the image data by applying small random
variations to the colors of the input images given to the depth



TABLE I
PERFORMANCE ON KITTI EIGEN TEST SPLIT. SUPERVISION SIGNAL: D - DEPTH, V - VIDEO SEQUENCE (W/O GROUND-TRUTH EGOMOTION), S -
STEREO. ↓ MEANS LOWER IS BETTER, ↑ MEANS HIGHER IS BETTER. BEST OVERALL IN BOLD. BEST AMONG S IN BLUE. BEST AMONG V IN RED.

Method Signal Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑
Eigen et al.[14] D 0.203 1.548 6.307 0.282 0.702 0.890 0.958
Zhou et al.[4] * V 0.198 1.836 6.565 0.275 0.718 0.901 0.960
Garg et al.[2] † S 0.169 1.080 5.104 0.273 0.740 0.904 0.962

Mahjourian et al.[5] * V 0.159 1.231 5.912 0.243 0.784 0.923 0.970
Wang et al.[6] * V 0.148 1.187 5.496 0.226 0.812 0.938 0.975

Godard et al.[3] * S 0.114 0.898 4.935 0.206 0.861 0.949 0.976
Gordon et al.[10] V 0.129 0.982 5.230 - - - -
Godard et al.[9] S 0.107 0.849 4.764 0.201 0.874 0.953 0.977
Godard et al.[9] S + V 0.106 0.806 4.630 0.193 0.876 0.958 0.980

Guizilini et al.[7] V 0.107 0.802 4.538 0.186 0.889 0.962 0.981
This work S 0.106 0.743 4.707 0.201 0.864 0.949 0.977

* method is trained on Cityscapes data set [8] and fine-tuned on KITTI.
† method is tested with depths capped at 50m, otherwise 80m.

TABLE II
ABLATION STUDIES CONDUCTED ON KITTI EIGEN TEST SPLIT. ↓ MEANS LOWER IS BETTER, ↑ MEANS HIGHER IS BETTER.

Negative Occlusion Insertion Abs Rel↓ Sq Rel↓ RMSE↓ RMSE log↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑Depth Loss Handling Epoch
- none - 0.108 0.776 4.881 0.210 0.854 0.946 0.974
X none - 0.109 0.764 4.790 0.207 0.859 0.949 0.975
X z-buffer 1 0.108 0.764 4.857 0.207 0.855 0.948 0.976
X z-buffer 6 0.109 0.775 4.847 0.211 0.851 0.943 0.974
X z-buffer 11 0.106 0.743 4.707 0.201 0.864 0.949 0.977
X z-buffer 16 0.109 0.770 4.898 0.210 0.854 0.946 0.974
- z-buffer 11 0.109 0.752 4.808 0.205 0.858 0.949 0.976
X heuristic [10] 11 0.115 0.860 5.111 0.223 0.846 0.939 0.970

prediction network. However, we sample unmodified pixel
colors from the original images during image reconstruction
to avoid spurious color mismatches.

The hyperparameters of LSSIM in equation 4 are as given
in Mahjourian et al. [5]. For our overall loss function in
equation 5, we set λ1 = 0.005, λ2 = 10, λ3 = 2 and λ4 = 2,
which puts each loss term on roughly the same scale and
acknowledges the relatively low importance of point cloud
matching after the initial training.

In this setup, the model takes about 1.08 seconds to run one
training step update (per batch) on an NVIDIA Titan RTX.
Including the z-buffer adds only 8 ms to this processing time.

All code and training checkpoints are available.12

C. Results

Table I lists the evaluation results on the standard Eigen [14]
test split compared with several previous methods. All the
methods listed are not fine-tuned on any ground-truth depth
data. This table is not meant to demonstrate our approach to be
superior over all—although it does boost performance on some
metrics—but instead to demonstrate its comparability with
other similar unsupervised methods on the standard metrics,
particularly when using the same training signals. In addition,
it gives context for the relative scale of improvements.

Rather, the ablation experiments of Table II demonstrate
the contributions of our methods with respect to a fixed

1Development repository: https://github.com/arthurhero/ZbuffDepth
2Permanent archive: https://hdl.handle.net/11084/10450

network architecture. The first row establishes a baseline,
using the network trained without the negative depth loss
(i.e., λ4 = 0) and no occlusion-handling method, explicit or
implicit. Importantly, when the negative depth loss is excluded,
we also include in-frame negative-depth points from N in the
other losses, as in prior work. The second row demonstrates
that incorporating the negative depth loss (and excluding N
from other losses) yields an improvement across all metrics
but one. The next group of several rows incorporate the z-
buffer for occlusion handling at different points in the training
process (i.e., beginning, 25%, 50%, and 75% of the way
through). Having found an optimal time to insert the z-buffer—
epoch 11 of 20, 50% of the way through the training—the last
two rows test the relative contributions of the negative depth
loss and the alternative occlusion-handling heuristic proposed
by Gordon et al. [10].

These results demonstrate that the z-buffer indeed improves
the depth prediction results when inserted at the right stage
of training. Inserting the z-buffer either too early or too late
harms the performance, which is not surprising.

At the early stages of training, most depth predictions are
inaccurate, and thus the points appear occluded due to the
prediction error rather than the true scene geometry. Excluding
the points from the loss calculation hampers learning. On
the other hand, if we utilize the z-buffer too late, then truly
occluded points might inappropriately factor into the loss
function and confuse the model.

Results also show that our use of a z-buffer outperforms



the consistency-driven heuristic method of Gordon et al. [10],
even when added to the training pipeline with the same
timing. Their method excludes every transformed point that
is “behind” the predicted depth of the target image (cf. Sec-
tion II-C). Experimental results imply that even when the depth
predictions are roughly reliable (around epoch 11), we should
not expect points from the original and target frames to agree
precisely. Some tiny amount of error can make a valid rotated
point fall behind the target depth image, masking it from the
loss calculation. With so many extra points excluded from
training, the model does not learn as well.

During our experiments, we found that excluding points
with negative depth from the loss calculations and including
a negative-depth loss is crucial for training shallow networks
from scratch. Without the exclusion, the model will be quickly
led astray by the erroneous depth information. For pre-trained
deep networks, including such points and turning off the
negative-depth loss is not fatal, but still harms performance
(as shown in Table II).

V. CONCLUSIONS

Our work proposes solutions to important issues in the
point transformation phase of the image reconstruction training
paradigm for self-supervised monocular depth estimation. We
experiment on stereo pairs, demonstrating the effectiveness
of our methods on the model’s performance through ablation
studies and comparisons with past literature.

Our results demonstrate that the parallelized z-buffering
algorithm rectifies inconsistencies in the loss functions in-
volving reprojections, allowing for improved learning and test
performance with a negligible effect on training time.

Moreover, our algorithm can be easily incorporated with
other self-supervised approaches to monocular depth predic-
tion that use reprojection and associated metrics.

In addition, we demonstrate that penalizing in-frame points
with negative depth, an unlikely situation, can also improve
model performance.

Because they are rooted in a general approach rather than
a particular network architecture, these procedural changes
potentially offer benefits to a wide variety of monocular depth
prediction methods.
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sichtgeräten,” Ph.D. dissertation, Technischen Universität Berlin, 1974.

[23] H. Fuchs, “Distributing a visible surface algorithm over multiple pro-
cessors,” in Proc. ACM Annual Conf., 1977.

[24] F. I. Parke, “Simulation and expected performance analysis of multiple
processor z-buffer systems,” in Proc. SIGGRAPH, 1980, p. 48–56.

[25] J.-j. Li and S. Miguet, “Z-buffer on a transputer-based machine,” in
Proc. Distributed Memory Computing Conf., 1991, pp. 315–316.

[26] C. Renaud, “Fast local and global illuminations through a SIMD z-
buffer,” Intl. J. Pattern Rec. and Artificial Intell., vol. 11, no. 07, pp.
1095–1112, 1997.

[27] H. Shen, J. You, and D. J. Evans, “An efficient parallel algorithm or
visible-surface detection in 3d graphics display,” Intl. J. of Comp. Math.,
vol. 67, no. 3-4, pp. 359–371, 1998.

[28] N. Ravi, J. Reizenstein, D. Novotny, T. Gordon, W.-Y. Lo, J. Johnson,
and G. Gkioxari, “Accelerating 3D deep learning with PyTorch3D,”
arXiv:2007.08501, 2020.

[29] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in Proc. CVPR, 2009, pp.
248–255.


