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ABSTRACT

UNIFIED DETECTION AND RECOGNITION FOR

READING TEXT IN SCENE IMAGES

MAY 2008

JEROD J. WEINMAN

B.Sc., ROSE-HULMAN INSTITUTE OF TECHNOLOGY

M.Sc., UNIVERSITY OF MASSACHUSETTS AMHERST

Ph.D., UNIVERSITY OF MASSACHUSETTS AMHERST

Directed by: Professor Allen R. Hanson and Professor Erik G. Learned-Miller

Although an automated reader for the blind first appeared nearly two-hundred
years ago, computers can currently “read” document text about as well as a seven-
year-old. Scene text recognition brings many new challenges. A central limitation of
current approaches is a feed-forward, bottom-up, pipelined architecture that isolates
the many tasks and information involved in reading. The result is a system that
commits errors from which it cannot recover and has components that lack access to
relevant information.

We propose a system for scene text reading that in its design, training, and opera-
tion is more integrated. First, we present a simple contextual model for text detection
that is ignorant of any recognition. Through the use of special features and data con-
text, this model performs well on the detection task, but limitations remain due to
the lack of interpretation. We then introduce a recognition model that integrates sev-
eral information sources, including font consistency and a lexicon, and compare it to
approaches using pipelined architectures with similar information. Next we examine
a more unified detection and recognition framework where features are selected based
on the joint task of detection and recognition, rather than each task individually. This
approach yields better results with fewer features. Finally, we demonstrate a model
that incorporates segmentation and recognition at both the character and word lev-
els. Text with difficult layouts and low resolution are more accurately recognized by
this integrated approach. By more tightly coupling several aspects of detection and
recognition, we hope to establish a new unified way of approaching the problem that
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will lead to improved performance. We would like computers to become accomplished
grammar-school level readers.
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CHAPTER 1

INTRODUCTION

The first attempt to build machines that could read occurred nearly two-hundred
years ago [102]. Since then, computers have barely reached the reading level accuracy
of a second-grade child [99]. Many facilities are involved in human reading [97], and
similarly, there has been a vast amount of research on computational methods for
text recognition. The bulk of text recognition research over the last fifty years has
focused on scanned documents and faxes, but interest in indexing text in video and
scene images has grown rapidly in the last decade. Detecting and recognizing text in
scenes involves some of the same issues as document processing, but there are also
several new problems to face. Recent research in these areas has shown some promise,
but there is still much work to be done.

The problem of developing a computational model for reading is broad, encom-
passing many facets of information. There are any number of typefaces, and they
may be encountered at many legible sizes. Text is usually printed on a surface, and
humans do not generally require that the surface be fronto-parallel to their eyes in
order to read it. Additionally, lighting conditions may vary widely and designers use
many colors for text and background. All of these factors conspire to make the robust
reading problem very challenging.

Many processes are undoubtedly at work when humans read. Reading text in
arbitrary images likely goes hand in hand with scene interpretation and object recog-
nition. Humans might (subconsciously) ask: Where do I expect to see text? Does text
at a particular size and location contradict a sensible scene interpretation? Recog-
nizing these factors will allow us to take some necessary steps toward a unified view
of scene interpretation, even if such propositions are not directly modeled.

One of the central limitations of many current approaches is that they operate
primarily in a feed-forward, bottom-up, pipelined architecture that isolates the many
tasks and information involved in reading. The result is a system that commits
errors from which it cannot recover and has components that lack access to relevant
information.

We propose a system that in its design, training, and operation is more integrated.
First, we present a contextual model for text detection (Chapter 3). Although we im-
prove detection results by taking a broader view of the input scene than the typical
sliding window approach, the model is still illiterate. That is, it can find what it
thinks looks like text, but is unable to interpret it. Next, we focus on the recogni-
tion task, introducing a model that integrates several information sources, including
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Figure 1.1. Figure from the patent for the first practical OCR system [105].

font consistency, linguistic properties, and a lexicon (Chapter 4). This unified read-
ing model outperforms approaches using similar information in the more traditional
pipelined architecture.

Detection and recognition are not processes that happen in isolation, but that in-
stead require feedback and communication for optimal performance. Toward this end,
we introduce a template-based local feature model that can be utilized for detection
or recognition (Chapter 5). We achieve better results with fewer features by select-
ing features and training the model on the joint task of detection and recognition,
rather than for each sub-task independently. Finally, we unify character and word
segmentation with recognition, integrating these processes in a single model that can
evaluate and compare interpretations with maximal awareness (Chapter 6).

Next we describe the problem of scene text reading and contrast it with the probem
of document processing. In the remainder of this chapter we review some of the broad
literature relevant to the tasks of document processing, text detection, and character
recognition. Chapter 2 will then review the common, underlying framework for the
probability models used in the rest of the thesis.

1.1 Scene Text

There is a long history of research and development of automatic readers. The first
practical system was a patent filed in 1951 by David H. Shepard [105]. This device
(see Figure 1.1) converted typewritten documents into punch cards in a magazine
subscription department. Of course, hardware devices and software techniques have
improved a great deal in the fifty intervening years.

Several differences exist between reading text in documents and in scene images.
A few examples are shown in Figure 1.2. The first primary difference is in the problem
of locating the text to be recognized. In a standard one or two column document,
almost no detection must be done. Lines of text are easy to identify and simple
heuristics are usually sufficient to prepare the input for recognition. In more complex
documents such as newspapers and magazines, there is an added difficulty of distin-
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Figure 1.2. Images for document page reading (top) and scene text reading (bot-
tom).
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guishing between text and image regions. However, these are often separate and aided
by several intentional cues such as high contrast in the text and strong rectangular
boundaries in images. In addition, text almost always appears in canonical horizontal
or vertical orientations, and many techniques have been developed to estimate the
global rotation necessary to horizontally “level” text lines in the image plane. Recent
developments have also been made in the analysis of pages using camera-based acqui-
sition techniques. More complex world transforms must be considered in these cases,
but often an explicit model of the page can be used to rectify the text and return it
to a planar appearance. Uneven lighting can be problematic in these situations, but
the general binary nature of text on a page still makes local processing feasible for
providing good binarizations.

The problem of finding text in an arbitrary image of a scene can be radically more
complex. First, the contents of the input image are generally more varied. From urban
structures to more natural subjects like trees, the variety of potential image contents
is vast, and it occupies all of the input image. Text regions in scene images need not
be well-bounded the way they usually are in documents. Furthermore, text in scenes
is often only a few words in one place. There are no large paragraphs or long lines to
analyze. Although text is generally designed to be readable, there are often adverse
effects of the imaging conditions that can make it difficult to identify. Distance from
the camera can make text small and low resolution, without much detail. Specularities
can mix text regions with a reflected image. Perspective distortion can produce text
with a varying font size or orientation. Moreover, unlike document processing, there
is no global page model whose transform parameters can be estimated. Because text
may be printed on bricks, wood, or complex backgrounds, the simple binarization and
text zoning algorithms of document processing will be insufficient. Small amounts
of text can appear anywhere, at any size, with any world orientation, and on any
surface. All of these problems tend to make text location in scene images generally
more challenging than document text detection and pre-processing.

It is also important to contrast the nature of recognizing text in documents and
scene images. As mentioned above, a region of text in a scene often involves only
one to five words. This makes several techniques that might be used by document
recognition systems less applicable. For instance, powerful language models that rely
on complete sentences or longer phrases may not be useful. Also, techniques for
identifying the font face of a text sample to aid recognition may not be robust with
only a handful of characters. In addition to the small sample problem, the sheer
variety of fonts that may be present in signs and scenes is often much greater than
that found in most documents. Text recognition algorithms for scene images must
handle a great number of fonts, many of which will be entirely novel for the system.
Perspective distortions and complex backgrounds, as described above, will also require
recognition algorithms to be robust to character“deformations”and non-binary input.
In low resolution situations, it will not be reasonable to binarize text regions before
recognition. This is in contrast to most document recognition systems, which often
rely on binary images to at least perform word segmentation prior to recognition, if
not a heuristic over-segmentation of binarized characters.
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Figure 1.3. Example scene text reading result.

In conclusion, several things make reading scene text fundamentally different from
document reading. Most of these make the problem much harder. This thesis develops
methods for overcoming many of these difficulties. While others have published some
solutions for these problems, we examine the shortcomings of the assumptions made
in prior work. Our central contribution is removing as many of these assumptions as
possible, allowing several aspects of detection and recognition—even detection and
recognition themselves—to be more unified. An example result using the methods of
this thesis is shown in Figure 1.3. The rest of this chapter focuses on prior work in
both document and scene text processing.

1.2 Text Detection

Unless characters are expected to appear at pre-defined page locations , as in forms
processing, the text must somehow be located. Text detection in document processing
is often treated as a very straightforward process. Typically, this involves a search for
lines of text in a binarized image. Other approaches include processing and classifying
connected components [4]. A cogent survey of the document image analysis field as
represented by publications in the Transactions on Pattern Analysis and Machine
Intelligence is given by Nagy [86]. Detecting text in scenes or low resolution video
is more difficult, yet these problems have experienced increased prominence recently
with contests sponsored by the International Conference on Document Analysis and
Recognition in 2003 [72] and 2005 [73]. The two competitions received a total of nine
entries. On the task of word block detection, the best system received an F -score of
0.62 with a recall of 0.67 and precision of 0.62.1 In Chapter 3, we will present a model
that on different, but similarly difficult, data receives an F -score of 0.72 (recall 0.67
and precision 0.79) on the broader (and admittedly easier) text block detection task.

1Recall is equivalent to detection rate, while precision is the fraction of true positives among
predicted positives. F -score is the harmonic mean of recall and precision.
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Table 1.1. Difficulties of text localization in various media.

Issue Graphic Art Video Scene Image

Low Resolution No Yes Sometimes
Font Variety Yes Yes Yes
Low Contrast No No Sometimes

Non-Standard Orientation Yes Rarely Yes
Perspective Distortion Sometimes Rarely Yes

In Chapter 5 we present a model and training algorithm that more closely couples
the text detection with the eventual recognition.

There are a wide variety of techniques for detecting text in video, still images of
scenes, or complex documents such as graphic art. These different input modalities
differ slightly, but the difficulties are shared among them in various ways, as shown in
Table 1.1. Most of the approaches can broadly be characterized as edge-/gradient-,
color-, or texture-based segmentation and localization methods.

1.2.1 Edge- and Gradient-Based Text Detection

Relatively early work on text segmentation by Jain and Bhattacharjee [53] ap-
plied a bank of Gabor filters, followed by clustering to classify pixels. Similarly,
Wu et al. [132] use a non-linear function of multiscale Gaussian derivatives to identify
regions of high energy, which typically correspond to text. These features are also
subsequently clustered. The same approach is also used by Thillou et al. [113]. Gar-
cia and Apostolidis [36] use edge detectors and morphological operations to remove
noise and fill in dense edgel areas. Gao et al. [34, 35] have a pipelined approach
involving edge detection, adaptive search, color modeling, and layout analysis. For
superimposed horizontal text in video, the technique of Wolf et al. [131] uses local
integrations of horizontal derivatives followed by morphological processing. The re-
sults are tracked through frames, integrated for higher resolution, and binarized to
improve performance with standard OCR software. Ezaki et al. [29] have a dual-
mode approach. For small characters (under thirty pixels), the method combines the
output from morphological operations, binarizes, and finds connected components in
horizontally oriented regions. For larger characters, edges are calculated and a color-
based method is also used to hypothesize character regions. Shen and Coughlan [104]
compose edges into end-stops and pairs defining strokes, which may then be grouped
into vertical and horizontal features.

Figure 1.4 illustrates one potential problem with edge-based methods. When text
is small, blurry, and of low contrast, edge detectors may not find all of the vertical
strokes perceived in higher resolution text, which these methods rely heavily on. If
there is sufficient image detail to recognize text, then there ought to be enough to
detect it. The method we propose in Chapter 5 uses the same image gradient-based
features for both detection and recognition.
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Figure 1.4. Small text in an image (x-height of 14 pixels) and its corresponding
Canny edge map.

1.2.2 Color-Based Text Detection

Gao et al. [34, 35] use color as one step in their framework, assuming that char-
acter regions can be segmented with a Gaussian mixture model into foreground and
background components. Alternately, Zhang and Chang [137] segment an input image
using the mean-shift algorithm and then label each region as text or non-text with a
Markov field. Attempts to binarize images without regard for character identity are
prone to poor performance when images have low resolution and/or low contrast (see
Figure 1.5 on page 12). Instead, our approach throughout this thesis will be to detect
and recognize characters based directly on the image, rather than an intermediate,
uninformed binarization.

1.2.3 Texture-Based Text Detection

Clark and Mirmehdi [24] use four simple texture features as input to a neural
network for text detection. These include local grayscale variance, edge density,
neighborhood histogram differences (a type of texture gradient), and a normalized
edge direction symmetry measure. Li et al. [67] employ a neural network trained on
the mean and second- and third-order central moments of wavelet coefficients to inde-
pendently classify blocks of pixels. Chen and Yuille [21] use a combination of feature
sets in a cascaded AdaBoost classifier to detect text of all sizes in images. By using
features fixed to a particular window size, they are able to train a single classifier
and run it at several window sizes to detect text at many scales. The features are a
combination of intensity and gradient statistics, histograms motivated by the bimodal
nature of text regions, and linked edges. Yamaguchi and Maruyama [135] employ a
hierarchical classification of local regions for text detection. The first stage tests the
region intensity histogram for bimodality. The second stage uses an SVM trained on
sparse Haar wavelet coefficients.

Our models closely follow the texture-based approach, adding a variety of statistics
of the gradient-based features to get regional texture cues. The main contribution is
in how we use these features for the overall reading task.

1.2.4 Layout Analysis

Many of the text detection references above perform some form of layout analysis.
Most use heuristics to find strictly horizontal or horizontal and vertical linear text
strings [132, 36, 34, 29]. Thillou et al. [113, 31] correct for perspective distortion
by following a coarse line analysis with vanishing point estimation and perspective
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rectification, as do Gao et al. [34]. Still, both of these methods rely on hand-coded
rules.

In contrast, Zhang and Chang [137] use triplet cliques on image segments to
flexibly handle the linearity of text in a probabilistic model with learned parameters.
Similarly, Shen and Coughlan [104] classify vertical and horizontal stroke features
with learnable compatibilities in a probabilistic model.

Probabilistic systems for layout analysis are more flexible and require less manual
parameter tuning than heuristic methods. As such, they should be able to directly
handle text that is not strictly horizontal or vertical, if they are trained on such data.
What these two approaches lack is feedback between the feature computation (i.e.,
segmentation [137], stroke detection [104]) and the classification of the features as text
or non-text. Thus, top-down interpretation cannot influence the lower-level features.
To address this issue, we propose joint feature selection for detection and recognition
in Chapter 6 .

1.2.5 Summary

Many of the approaches to text detection and segmentation above may be classi-
fied as texture-based, since they use various features and statistics of intensities and
gradients[53, 132, 24, 67, 135, 113]. Some make use of edge features or morphological
operator outputs [36, 34, 35]. Others combine some of these features [131], e.g., at
different stages in a pipelined classifier [21] or to handle different sizes of text [29].
By contrast, some others methods are region-based [137] or use higher-level features
as input to a classifier [104].

With a few exceptions, most of these systems are divorced from the recognition
process. As such, many do only a rough initial or windowed detection [53, 24, 21, 135],
while others may track text regions across video frames [67, 131]. Some use heuristics
for combining text regions and/or pruning non-text regions [132, 36, 34, 35, 113],
while very few have learned or learnable layout analyses [137, 104].

Prior to recognition, many of the systems binarize text regions [132, 36, 131, 21,
137, 113], while one isolates characters (via binarization) but subsequently classifies
features of the grayscale image [35].

By learning the spatial properties of text to improve detection and bridging the
gap between detection and recognition during training, the methods we present in
this thesis overcome many of the limitations present in earlier approaches to text
detection.

Next we discuss some of the relevant approaches to recognizing text in document
processing and more recent camera- and video-based systems.

1.3 Text Recognition

A great deal of prior knowledge can be brought to bear on the text recogni-
tion problem, from the essentials like the general appearance of characters, to more
complex factors such as language and lexicon awareness. Many of these have been
employed in one form or another, but typically they are not fully integrated. In this
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section, we review some of the approaches to recognizing text in both documents and
camera- or video-based systems.

1.3.1 Incorporating Language

Many have realized the advantage in crafting computer reading systems that utilize
prior language knowledge to improve recognition. Work on processing misspellings
goes back several decades [38]. The earliest use of uniting character confusion like-
lihoods with a lexicon constraint is by Bledsoe and Browning [11] in 1959. Device-
specific character confusion likelihoods are combined with word unigram probabilities
to find the most likely dictionary word given the OCR output. One major drawback is
that the computational load is linear in the size of the lexicon. Language information
may also be used by looking at smaller, more local pieces of information. Riseman
and Hanson [100] use binary positional trigrams to flag and correct spelling or recog-
nition errors. Later, Jones et al. [55] combined these ideas by using device-specific
character confusions with bigram models to find the most likely string as an OCR
post-processor.

Rather than model character confusions [11, 55], which are limited by both their
device- and font-specific nature, it seems more natural to model prediction uncer-
tainty. For example, when an l (ell) and a 1 (one) cannot be adequately distinguished
in isolation, probabilistic methods can assign them both roughly the same high prob-
ability. Having equal weighting given the image, other sources of information can
help resolve the ambiguity. This approach is presently more common.

At the word level, Zhang and Chang [138] use a Parzen window model with Gaus-
sian kernels to model character conditional densities. Recognition is then conditioned
on a prior probability over words, thus restricting output to lexicon entries. “Back-off”
to character recognition is facilitated by a non-word prior probability. In this mode,
only the character appearance is used; no bigrams or other linguistic properties are
modeled.

At a higher level, Hull [50] introduced a Markov model incorporating part of speech
(POS) information for word transitions. This uses a hard threshold on probabilities
to restrict the set of hypotheses considered for each word. Given the word hypotheses
and their corresponding parts of speech, the observation probability of each POS is
generated for each “time” step; the transition probabilities are learned from a corpus.
The most likely POS sequence is output, which is used to further restrict the set of
word hypotheses but does not necessarily make a unique prediction. This higher level
information can be quite useful for recognition under adverse condition.

A more integrated, mostly script-generic OCR system is presented by Bazzi et al. [5].
Preprocessing involves finding lines, and features are computed on small slices of a line
that has been normalized to minimize the effects of font size (up to 14 pixel columns
for a character). An HMM for each character traverses these slices. Operating in a
closed-vocabulary mode, the tokens are lexicon words, and the transitions are based
on word n-gram models. Since the state space is very large (the lexicon size), the
Viterbi algorithm is approximated by a multi-pass search. In an open-vocabulary
mode, the tokens are characters, and the transitions are based on character n-gram
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models; this performs worse than closed-vocabulary. A hybrid method that uses
character-based recognition with some higher level constraints from a word lexicon
and a word unigram language model performs better than the character-based (open
vocabulary) model but not as well as the word-based model, although it is free of the
closed vocabulary assumption. In Chapters 4 and 6 we will present hybrid models that
outperform both strictly open- and closed-vocabulary modes in empirical evaluations.

Kornai [59] discusses many of the issues with the common approaches to language
modeling in recognition. Many issues are perennial (e.g., combinatorial explosion
and pattern complexity), but several have seen progress (e.g., lack of joint optimiza-
tion, closed world assumption, inappropriate setting of the alphabet, lack of semantic
checking, etc.). We address the issues of joint optimization and the closed world
assumption, among others, in this thesis.

1.3.2 Robust Recognition

As computers and methods have become more powerful, applications involving
reading text from scenes have become a reality. Some of the earliest work in this
area realized the importance of combining recognition with segmentation. In the
work of Ohya et al. [87] scene images are segmented and candidate character regions
are detected by observing gray-level differences between adjacent regions. Character
pattern candidates are obtained by linking detected regions according to their nearby
positions and similar gray levels. For recognition, the character pattern candidates
are compared to a training data set. A relaxational approach to determine character
patterns updates the comparisons by evaluating the interactions between categories of
patterns, based on topological similarity. This important early work flexibly modeled
alternative interpretations in a framework akin to probability. However, early stages
of the algorithm still rely on binarization, which can be problematic (c.f., §1.2 and
Fig. 1.5 on page 12).

Given a character segmentation and binarization, McQueen and Mann [80] place
a grid on binary character images and count the lines (polarity changes) along hor-
izontal, vertical, and diagonal directions. These features are compared to a set of
training data, classifying them by the nearest-neighbor rule. The results are then
post-processed in an ad hoc fashion with trigrams and a lexicon. After perspective
rectification and binarization, Thillou et al. [113] isolate characters via connected
components analysis and pass the results to a neural network for recognition. Their
results are also post-processed by applying an n-gram model to the n-best character
list.

Rather than binarize an image for recognition, Wang and Pavlidis [122] advo-
cate extraction of features from the grayscale image to avoid information loss. The
recognition system of Chen et al. [23] follows this lead. Although they use a Gaussian
mixture model to binarize text regions, the purpose is only to isolate characters. Once
found, a character is placed on a grid and Gabor filters are applied to a grayscale nor-
malized image. A Fisher linear discriminant trained on 4,000 characters in six fonts
is then used for classification.
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Kusachi et al. [62] have a multi-resolution coarse-to-fine image scan for characters
that is free of a separate detection stage. Feature vectors are calculated by sampling
edge directions on a grid and then subjecting them to a PCA decomposition. A
database of training examples is stored in the PCA format. Features are calculated
at every location, and candidates are iteratively pruned if they do not sufficiently
match the query’s high-value eigenvectors. This approach, applied to Japanese kanji,
is unique in completely unifying detection and recognition. However, it still relies on
features derived from binarized images.

One of the most robust and widely-deployed systems for digit recognition is the
convolutional network of LeCun [65]. Unlike other neural network approaches to
classification, the convolutional network uses highly shared features that account
for the strong spatial information involved in character recognition. It is related to
the Fukushima Neocognitron [33], a model with hierarchical processing for invariant
recognition based on successive stages of local template matching and spatial pooling.
Rather than use the typical three-layer neural network architecture, a convolutional
network is arranged with an initial set of image filter kernels, followed by a weighted
averaging and downsampling operation. These outputs are then fed to another layer
of convolution kernels for further averaging and downsampling. These final feature
maps are finally fed to a fully connected classification layer. All of the kernel coeffi-
cients and weighted averaging parameters are learned from training data. Thus, the
primary layer extracts basis features from an image (such as ink detectors and edge
orientations), and the downsampling operation lessens their spatial specificity for ro-
bustness to distortion. The second layer extracts more complicated features of the
initial filter outputs (perhaps intersections or loops) and is followed by more spatial
pooling.

The convolutional network remains one of the best methods for digit recognition
[108]. Recently it has been expanded to general character recognition for camera-
based document processing by Jacobs et al. [52]. They combine LeCun’s original
dynamic programming method for simultaneous (one-dimensional) segmentation and
recognition [64] with a constraint that word candidates (paths through the Viterbi
trellis) come from a lexicon, made more efficient by a trie format [74].

A related framework by Belongie et al. is character recognition with shape context
features [8]. A shape context is a local feature descriptor that bins edge detector
outputs (possibly with orientation information) over a log-polar spatial area. They
estimate an aligning transform of shape contexts between a prototype and a query,
using the nearest neighbor rule for recognition. Although it is among the best on
the MNIST data set for digit recognition, the approach has several key limitations.
First, since it is a nearest neighbor approach, recognition is generally linear in the
number of exemplars. Second, each exemplar must undergo a match process quadratic
or cubic in the number of shape context descriptors it and the query contain. The
matching complexity combined with the limitations of stored exemplar-type classifiers
make this approach unattractive for general scene text recognition. However, the core
idea of using features based on local image properties has been important for general
discrimination techniques beyond matching.
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Figure 1.5. Uninformed segmentation can make recognition difficult. Top: Input
image. Left: Probability of foreground under a Gaussian mixture model (k = 3, HSV
color space). Right: Binarization by threshold (p (foreground|k = 3, image) ≥1

2
).

One other closely related work is that of Tu et al. [118]. Here, discriminative
models are used as bottom-up proposal distributions in a large generative model.
Discriminative text detectors are used, and then a generative model must be able to
explain the pixel data as a contour describing a known character. They claim the
advantage of the generative model is that it ensures consistent regions. However,
spatially coupled discriminative models can overcome this [61, 124]. While their
bottom-up detectors seem to do a reasonable job of detecting text to subsequently be
explained, the generative models for characters are independent of one another. In
other words, there is no coupling of information based on where a character should
appear (i.e., next to other characters), nor how it should appear (similar to nearby
characters). The models in this thesis will demonstrate the utility of such information
for interpreting scene text.

We can broadly categorize the systems for robust character recognition along the
following dimensions:

• Binarization [87, 80, 113] versus grayscale feature extraction [23, 62, 52, 118]

• Separate detection/segmentation [80, 113, 23] versus integrated detection/segmentation
and recognition [87, 62, 52, 118]

• Language independent [87, 23, 62, 118] versus language post-processing [80, 113]
versus integrated language models [52].

Although some OCR systems have a fully integrated language model [5, 14, 52], the
systems thus far designed for reading scene text either use no language information
[87, 22, 62] or, at best, post-processing [80, 113]. Moreover, as the most difficult
scene text suffers from the difficulties listed in Table 1.1 on page 6, binarization and
segmentation will become increasingly difficult without regard for interpretation (see
Figure 1.5). The effectiveness of integrating language with simultaneous segmentation
and recognition on grayscale—not binary—images was demonstrated in the camera-
based OCR system of Jacobs et al. [52]. Research on noisy and degraded documents
has recognized this fact for some time. Indeed, this may explain some of the success
of text detection and recognition systems that use commercial OCR systems (e.g.,
[132, 131, 21]).

12



1.3.3 Adaptive Recognition

Several methods have been proposed to adapt the recognition process to a par-
ticular input. These include adaptive classifiers that change their character models
to match the fonts present in a document, using character or word similarity to con-
strain classification to respect equivalences, and recognition-free approaches based on
cryptogram solvers.

1.3.3.1 Document- and Font-Specific Recognition

Perhaps the simplest approach to adaptive recognition is to first identify the font
in use and then use a classifier specific to that font. It is likely that many com-
mercial OCR systems employ this strategy for clean scans of documents. Shi and
Pavlidis [106] use font recognition and contextual processing to improve recognition.
Font information—whether fixed width and/or italic—is extracted from global page
properties and by recognizing short words. Contextual processing is done by post-
processing spell correction, but also by measuring the distance of an illegal word to
each word in the lexicon on the basis of a system-dependent confusions (much like
Jones et al. [55]). Bapst and Ingold [3] demonstrate that typographic information can
improve document image analysis, with fewer complex recognition heuristics. They
examine font recognition with an a priori font set as the basis, the resulting monofont
recognition problem, and advantages in word segmentation.

The other, more general approach is to learn font-specific character models during
recognition. A system proposed in the mid 1960’s by Nagy, Shelton, and Baird [84,
2] involves a heuristic self-corrective character recognition algorithm that adapts to
the typeface of the document by retraining the classifier on the test data with the
labels previously assigned by the classifier and iterating until the labels go unchanged.
Kopec [58] updates character models from a document transcription. An aligned
template estimation algorithm maximizes a character template likelihood, subject
to some disjointness constraints. Glyph origins are located and labeled using some
initial set of templates. Rather than use a transcription, Edwards and Forsyth [28]
improve character models by bootstrapping a weak classifier from a small amount of
training data. By identifying words—which are more discriminative than individual
characters—with high confidence, their constituent characters may be extracted and
added to character model training data.

A related approach is to parameterize font styles. For instance, Mathis and
Breuel [78] examine the problem of test set “styles” (e.g., font properties) that are
not present in the training set. They use training data to learn prior probabilities
over font properties, which may then be marginalized in a Bayesian fashion during
recognition. Veeramachaneni and Nagy [120] formulate the recognition problem as
one where characters have a class-conditional parametric (i.e., normal Gaussian) dis-
tribution and use the typical MAP prediction rule. Latent font styles are introduced,
and the EM algorithm is used on the unlabeled test data to acquire probabilities for
the styles.
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1.3.3.2 Character and Word Similarity

Closely related to font awareness and adaptivity is the application of character
similarity and dissimilarity. Two tokens that look the same should often be given
the same label, and two that look very different should conversely be given different
labels.

The first application of this idea is due to Hong and Hull [46], who cluster word
images according to image similarity. The results of OCR output from individual
words are combined in a voting scheme to yield a single identity for an entire cluster.
Manmatha et al. [76, 96] cluster handwritten historical document word images and
create a document index by manually labeling a few clusters. This outperforms HMM
recognition on the same data and trades full automation for a more accurate system
with a reduced amount of manual input.

At the character level, Hobby and Ho [45] cluster character images by their sim-
ilarity. The bitmaps are then averaged for improved readability of noisy fax images.
Using the averages as input to OCR improves recognition rates, while voting on clus-
ter labels does not give a statistically significant improvement. Breuel [15, 16] uses a
neural network trained on pairs of characters that are labeled as being the same or
different. The network is then used as a scoring function to cluster digits with similar
appearances by simulated-annealing [15]. (No method is reported for determining the
correspondence between cluster labels and actual classes.) Alternatively, the network
may be used as a scoring function for a nearest neighbor classifier [16].

These methods capitalize on the idea of similarity; that characters and words
of similar appearance should be given the same label. However, they suffer from
the drawback that there is no feedback between the labeling and clustering process.
Hobby and Ho [45] ameliorate this somewhat by purging outliers from a cluster and
matching them to other clusters where possible. These processes all solve the cluster-
ing and recognition problems in separate stages, making it impossible to recover from
errors in the clustering stage. In Chapter 4 we present a model that incorporates char-
acter (dis)similarity with other sources of information simultaneously, outperforming
the pipelined approaches detailed above.

1.3.3.3 Cryptogram Approaches

At the extreme end of the adaptability spectrum is the hypothesis that no ap-
pearance model whatsoever is necessary, but that recognition can occur using only
language. This is the idea behind cryptogram puzzles, where a short message is
encrypted with a substitution cipher. These typically may be solved by frequency
analysis and recognizing letter patterns in words. Examples include Nagy et al. [85],
Ho and Nagy [44], Lee [66], and Huang [48].

1.3.4 Summary

There are many levels and sources of information that may be employed for text
recognition. Language models may consist of lexicons [11, 106, 5, 138, 52, 28], n-grams
[100, 55, 5, 14, 80, 113], and parts of speech [50], but often these act as post-processors
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rather than integrated systems. In addition to language, identifying character bound-
aries is necessary for recognition. This involves handling the foreground/background
problem either by binarization [87, 80, 113] or by operating directly on a grayscale
image [23, 62, 52]. Inter-character boundaries must also be segmented, which may be
a separate process [80, 113, 23] or integrated with recognition [87, 62, 52]. Both of
of these problems become more difficult as the input degrades. Using local font and
style information is also clearly helpful for improving recognition performance, but
typically this is done as a pre-processing step.

We have highlighted some historically significant or the most immediately relevant
work. More references to further camera-based systems may be found in a recent
review by Liang et al. [69]. The model we present in Chapter 4 shows how language
information, robust recognition features, and adaptive strategies can be united.

1.4 Joint Detection and Recognition

The path from sensed image to text cognition in humans is complex and still some-
what unknown. Nearly all approaches to computer-based reading have treated the
detection and recognition components of the reading process as isolated stages [70,
133, 134, 22, 20, 21]. At best, these approaches use recognition to filter out sus-
pect nonsense detections or find the best character segmentation after a binarization
process.

Two works to date that we are aware of have a more integrated detection and
recognition process. The first is that of Ohya, et al. [87], first described in Section
1.3.2. Here, candidate segmented regions are dynamically combined to be interpreted
as characters, if possible. The “detection” occurs only if the joined regions form a
recognizable character. In a unified model by Tu et al. [118], discriminative text
detectors are used as (bottom-up) proposal distributions for a (top-down) generative
recognition model. This generative model aims to explain the raw grayscale pixels as
characters, among other classes. Some works bypass the detection stage all together
by adding a non-character “background” class to the set of categories a classifier must
distinguish among. This is the approach taken by Kusachi et al. [62], also reviewed
in Section 1.3.2. By using a sliding-window technique, a character classifier then also
performs detection. The problem with this method is that it greatly increases the
number of hypotheses the initial classifier must consider. Kusachi et al. ameliorate
this somewhat by using a coarse-to-fine matching strategy to quickly prune non-
character regions. Unfortunately, their use of a non-parametric nearest neighbor
classifier minimizes the benefit since every input must be compared to the database
of sample characters at least once.

To summarize, these methods are all unified in their approach to processing at
test time. Ohya, et al. [87] has no learning component, though it does use a flexible
relaxation labeling strategy. Tu et al. [118] learn their generative and discriminative
models independently for each class (background, characters, faces, etc.). Although
the Bayesian model doesn’t explicitly contain a detection step, one is implicitly used
to improve the approximate inference strategy. Kusachi et al. [62] simply dispense
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with the detection stage altogether. One important facet being overlooked by all
of these methods is the opportunity to improve testing performance by unifying the
training of detection and recognition stages.

Later in the thesis we will examine how to tie detection and recognition together
during learning as well as the operation of the system. This will rely on sharing
intermediate levels of the classifier—i.e., features. In the remainder of this section,
we review some related feature selection strategies as they apply to computer vision
tasks and some recent work related to sharing features for different tasks.

1.4.1 Feature Selection

Several general frameworks exist for selecting features. The two most basic are
greedy forward and backward schemes. Forward schemes incrementally add features
to a model based on some criterion of feature utility. Examples of this include work
by Viola and Jones [121], who use single-feature linear classifiers as weak learners in a
boosting framework, adding features with the lowest weighted error to the ensemble.
A similar forward method by Berger et al. [9] involves adding only those candidates
that most increase the likelihood of a probabilistic model. Backward schemes, by
contrast, selectively prune features from a model. The ℓ1 or Laplacian prior [128]
for neural networks, maximum entropy models, logistic regression, etc. belongs to
this category. In this scheme, features are effectively eliminated from a model during
training by fixing their corresponding weights to zero. Many other variants for select-
ing a subset of features are possible; see Blum and Langley [12] for a more thorough
review.

Feature types and selection strategies for visual tasks have varied widely. The
Viola and Jones object detector [121] employs outputs of simple image difference
features, which are similar to wavelets. There are many possible filters and only a
few are discriminative, so a selection process is required primarily for computational
efficiency. Other methods use image fragments or patches as feature descriptors.
These patches may be taken directly from the image [119, 1] or an intermediate
wavelet-based representation [103, 83].

1.4.2 Feature Sharing

One of the most prominent examples of shared features in the general machine
learning literature is Caruana’s work on multitask learning [19]. The central idea is
to use a shared representation while learning tasks in parallel.

In particular, the high-dimensional patch-based image features mentioned above
are often densely sampled and vector quantized to create a discrete codebook repre-
sentation. Winn et al. [130] iteratively merge code words that do not contribute to
discrimination overall, while Jurie et al. [56] create a clustering algorithm designed to
cover the space with code words for better discrimination. Bernstein and Amit [10]
cluster patches in a generative model for characters. Alternatively, LeCun et al. [65]
learn (rather than select for) a discriminative intermediate feature representation.
However, all of these methods are focused on one type of recognition, either catego-
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Figure 1.6. An example object class hierarchy for images. Categorization, or detec-
tion, is classifying instances with labels from the center column, while identification,
or recognition, consist of giving instances labels from the right column.

rization (detection) or identification (recognition). Since all derived classifiers have
the same codebook of patches, they use a shared representation.

Torralba et al. [114] have also applied this idea to vision tasks by showing that
jointly selecting features for detecting several object categories reduces the requi-
site number of features and generalizes better than selecting features for detectors
independently. Bar Hillel and Weinshall [43] demonstrated that learning category
level models first and using that (fixed) representation for more specific recognition
is better than learning recognition models directly.

Only recently has work appeared that extends the idea of learning and feature
sharing across a task hierarchy. The earlier work of Torralba et al. [114] simply shared
features for multiple object category detection tasks. However, they give one example
in their latest work of performing shared feature selection for face detection and mood
categorization (a more generic form of recognition)—hierarchically related tasks [116].
The technique is based on boosting, which learns a one-versus-all binary classifier
for each class of interest. Their selection method requires an explicit search of the
(sub)classes that will share a feature. Exponential in complexity, they approximate
the search with a greedy best-first forward selection strategy.

1.4.3 Summary

Methods for text detection and recognition have either been learned and oper-
ated independently [70, 133, 134, 22, 20, 21] or else primarily approached from a
recognition-only point of view (with detection the logical implication of a recogni-
tion) [87, 62, 118]. The latter method can be more computationally expensive because
there are many more classes to consider. Feature selection strategies can reduce the
computational burden of a classifier [119, 1, 121, 83], while learning shared represen-
tations for multiple recognition tasks [65, 114, 56, 130, 10, 43, 116] can improve gen-
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eralization by sharing training data. Two works have examined learning hierarchical
recognition tasks like detection (or categorization) and recognition (subclass identifi-
cation). One fixes the representation (features) learned at the category level [43] for
subclass recognition, while the other jointly selects features for both levels [116].

1.5 Conclusions

There are many computational aspects of the entire process of reading the text
present in an image. All the features used for text detection are likely useful, but their
performance is bounded by the extent that they overlap with non-text in feature space.
False positives and missed detections are evidence of this, and indeed all bottom-up
architectures for recognition of any sort are vulnerable to the problem. The top-down
influence of recognition will be required both to eliminate the detection of texture
that appears to be characters (imagine a white picket fence as a string of ones), as
well as finding more instances of text that don’t conform to typical cases (such as a
lone letter or an nonlinear baseline).

The theme of this chapter is that by segregating the computational processes of
reading, opportunities for cooperation and information sharing have been missed.
This thesis demonstrates that these missed opportunities translate into performance
losses.
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CHAPTER 2

DISCRIMINATIVE MARKOV FIELDS

A digital image is a projection of high dimensional, high resolution reality into a
lower dimensional and lower resolution space. The basic purpose of computer vision,
manifested in various ways, is to recover some unknown aspects of that reality from
the comparatively small amount of data in images. In a few cases, geometry and
laws of the physical world guide this inference process in a deductive fashion. In
most cases however, images contain insufficient information to uniquely determine
truths about reality. Therefore, we are forced to reason from incomplete information
about propositions concerning the real world. For this reason, computer vision and
probability theory are inextricably linked.

The underlying computational mechanism for the contributions made in this thesis
is the discriminative Markov field. This powerful tool models dependencies between
unknowns, learns from training data, and gives interpretable results in the form of
probabilities. Introduced by Lafferty et al. [63], these undirected, discriminatively
trained graphical models are experiencing wide popularity in a number of fields for
their great flexibility and effectiveness.

In this chapter, we review the necessary general background for the specific models
we present throughout the thesis. First we introduce the basic notation and building
blocks for discriminative Markov fields. Then we discuss some of the general issues
with learning parameters from data. Finally, we briefly present some methods for
using the models to make predictions. In short, we cover:

• What is the basic model? (§2.1)

• How can we learn it? (§2.2)

• How can we use it? (§2.3)

2.1 Basic Model Formulation

2.1.1 Probability for Prediction

As mentioned above, computer vision involves making inferences from images.
Any time we must reason from incomplete information, the inferences are always
conditioned on some amount of background knowledge, prior information, or assump-
tions. We shall denote these as I throughout and condition all formal probabilities
upon them.
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Throughout this thesis, we will want to infer things about a set of unknowns,
denoted as y, given some observation (usually an image), denoted as x. In the sim-
plest sense, this involves assigning a probability distribution to the set of possible
values for y, conditioned on the observation and our prior information I: p (y | x, I).
This distribution represents a state of knowledge about y. Typically, assigning such
a probability is either very complex or requires many (probably unwarranted) as-
sumptions. Therefore, we introduce a parameter or model space Θ that describes a
range of alternative possibilities for relating x to y. If we have further evidence in
the form of training data D, we may then employ the laws of probability to calculate
the predictive distribution

p (y | x,D, I) =

∫

Θ

p (y | x, θ, I) p (θ | D, I) dθ. (2.1)

Note we have assumed that (i) given a prediction model θ ∈ Θ, the training data
D do not reveal anything additional about y, and (ii) given the training data D, an
additional image x does not give any information about the prediction model θ.

For now, we will focus on two probabilities in (2.1), the parameter-conditional pre-
dictive distribution p (y | x, θ, I) and the parameter posterior p (θ | D, I). Acquiring
and using the full predictive distribution are discussed in the next two sections.

2.1.2 Model Structure

One general way to represent the relationship between x and y is by capturing any
local dependencies among the unknowns, which may also depend on the observation.
Here, we motivate and give the general form for such a model.

Formally, we decompose y into a number of individual unknowns yi, indexed by
i ∈ V , that take values from some set yi ∈ Yi. Frequently the set of labels is the
same for all yi, but this need not be so. If we want to refer to some subset of the
unknowns, C ⊂ V , we write yC . The space of all yC is thus the Cartesian product of
the individual label spaces,

YC ≡
⊗

i∈C

Yi, C ⊆ V. (2.2)

Let Ω be the domain for the observations x.
If observing one or more of the yi were to change our state of knowledge about some

of the other unknowns, then we say these are logically dependent. Such dependencies
are frequently found in image understanding applications. For instance, knowing one
region contains text increases our belief that similar neighboring regions are also text.
These influences can be modeled by local functions that represent the compatibility
of labelings yC given to small subsets C of the unknowns. Compatibility functions
have the general form

U (yC ,x) : YC × Ω → R. (2.3)

20



If we have a family of sets C = {C | C ⊆ V } with corresponding compatibility func-
tions indexed by C ∈ C, then we may write the conditional probability as an expo-
nential sum over all the compatibilities

p (y | x, θ, I) ≡ 1

Z (x)
exp

{
∑

C∈C
UC (yC ,x; θC)

}
, (2.4)

where θC represents the parameters for a particular compatibility function indexed
by C, which collectively represent the parameters θ = {θC}C of the probability
distribution. The normalization constant

Z (x) ≡
∑

y∈YV

exp

{
∑

C∈C
UC (yC ,x; θC)

}
(2.5)

ensures that (2.4) is a proper probability distribution.
As an aside, we note that it is often natural to think of having more than one type

of function associated with a particular set of unknowns C. For instance, one function
on two neighboring unknown characters in a sequence could relate the compatibility
of the bigram, while another could relate the compatibility of the same neighboring
characters’ cases (e.g., lower versus upper). Since the exponent in (2.4) is additive,
such redundant functions UC can be reduced to the simpler form presented here.

Models like (2.4) have a long history in statistical physics, where the compatibility
functions UC represent the energy of a particular configuration in a physical system.
Hence, we will also refer to a compatibility function as an energy.

The probability could alternatively be written as a product of exponentiated com-
patibilities. Thus, the joint probability over y factors into a product of local functions,
typically called “factors.” Such exponential distributions are related to Markov fields
by the Hammersley-Clifford Theorem [40]. Each unknown yi and the entire observa-
tion x may be viewed as a node in a bipartite graph. The compatibility functions (or
factors) are also introduced as nodes and connected by edges to their arguments.

A simple example of a so-called factor graph is shown in Figure 2.1. Here, the
y represent unknown labels for characters. The joint probability is controlled by
two types of factors, which are illustrated by square nodes in the graph. One is a
function of a single character and the image, which influences the probability based
on appearance. The other is a function of two neighboring characters and models
local properties of the labels alone, like bigrams. Together, these factors contribute
to the overall probability. Typically, the same function is replicated several times
in a probability or factor graph, but with different arguments. For parsimony, we
simply use the entire observation x as an argument to the compatibility functions,
but generally when a function is replicated, the parameters θC are the same for all
C, and an appropriate portion of x is used within the function. In this example, the
same discriminant is used for each character, but its input is drawn from different
portions of the image. The bigram function does not use the image at all and is thus
truly replicated as the same function with different arguments.
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Figure 2.1. A simple factor graph that could be used for character recognition
based on the appearance of characters and bigrams. Solid (black) factors represent
the compatibility between a character label yi and an associated portion of the image
x. Hatched (blue) factors can model the bigram statistics between neighboring yi.

These types of models have a long history in computer vision. For instance, see
books by Li [68] and Winkler [129] for detailed treatments of more traditional mod-
els. Traditionally, exponential/Markov field probability models were generative, i.e.,
they represented p (y,x | θ, I) rather than the discriminative/conditional probability
p (y | x, θ, I). The discriminative form has become popular recently in many appli-
cations, such as region labeling [61, 41, 124], object detection [115], and object recog-
nition [95]. We will employ them throughout this thesis for all aspects of the reading
task, from detection to recognition. For an excellent tutorial on further applications
of factor graphs, see Kschischang et al. [60].

2.2 Model Training

In the last section we discussed the parameter-conditional model p (y | x, θ, I) that
is part of the integrand used to calculate the predictive distribution p (y | x,D, I). In
this section, we formulate how the predictive distribution is calculated.

Unfortunately, the integral (2.1) is generally intractable, and thus requires approx-
imation. One method might be to use Markov Chain Monte Carlo to sample from
the parameter posterior p (θ | D, I) and approximate the predictive distribution with
model averaging. Other alternatives include expectation propagation (EP) [81, 94],
which takes advantage of the parameter posterior being a product of simple terms
(which we will describe in more detail later in this section), and variational Bayesian
(VB) methods [51, 6], which force a factorization of the parameter posterior. Both
of these methods attempt to optimize the Kullback-Liebler (KL) divergence between
the actual and approximate posteriors. This divergence not being symmetric, the
difference between EP and VB is in the ordering of the arguments.

It is not yet clear whether such improved approximations are necessary or worth-
while for this particular Bayesian integral. Therefore, throughout this work we resort
to the much simpler point approximation. The standard approach is to find the most
likely model
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θ̂ ≡ arg max
θ∈Θ

p (θ | D, I) (2.6)

and use the point approximation for the parameter posterior

p (θ | D, I) ≈ δ
(
θ − θ̂

)
(2.7)

so that the integral (2.1) becomes

p (y | x,D, I) ≈ p
(
y | x, θ̂, I

)
. (2.8)

The question then becomes how to find the best model θ̂ given the training data.
First, we must explicitly write the form of the parameter posterior. With a set of

training labels Dy ≡
{
y(k)

}
k

that are conditionally independent given a model θ ∈ Θ

and the corresponding training images Dx ≡
{
x(k)

}
k
, we may use Bayes’ rule to write

the parameter posterior

p (θ | D, I) =
p (Dy | Dx, θ, I)

p (Dy | I)
p (Dx, θ | I) , (2.9)

where D = (Dy,Dx). The models of Θ parameterize conditional distributions of
y given x. Thus, we have formulated the problem such that a set of images and
the discriminative parameters are independent on background information I, so that
p (Dx, θ | I) = p (Dx | I) p (θ | I) . Since we must eventually optimize the parameter
posterior for θ, we need only be concerned with the terms that directly depend on θ

and can safely ignore both p (Dx | I) and p (Dy | I). Using the conditional indepen-
dence of the training instances to factor the likelihood, we thus write

p (θ | D, I) ∝ p (Dy | Dx, θ, I) p (θ | I) (2.10)

=
∏

k

p
(
y(k) | x(k), θ, I

)
p (θ | I) . (2.11)

At this point, we note that the likelihood terms p
(
y(k) | x(k), θ, I

)
have the same form

as the parameter-conditional predictive distribution (2.4),
The optimization (2.6) dictates we find the best model. Toward this end, we create

an objective function from the logarithm (an optimum preserving strictly monotonic
function) of the parameter posterior form in (2.11),

O (θ;D) ≡ P (θ) + L (θ;D) (2.12)

P (θ) ≡ log p (θ | I) (2.13)

L (θ;D) ≡
∑

k

log p
(
y(k) | x(k), θ, I

)
(2.14)

The likelihood (2.14) and the model prior (2.13) terms are discussed in more detail
next.
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2.2.1 Model Likelihood

Substituting the parametric form (2.4) for the model likelihood in (2.14) we have

L (θ;D) ≡
∑

k




∑

C∈C(k)

UC

(
y

(k)
C ,x(k); θC

)
− log Z

(
x(k)

)

 (2.15)

The set of functions {UC}C∈C(k) depends on the particular unknowns y(k), and thus C
is indexed by the particular example k.

For certain forms of compatibility functions, it can be shown that the objective
function L (θ;D) is convex, which means that global optima can be found by gradient
ascent or other convex optimization techniques [13]. In particular, if the compatibil-
ity functions are linear in the parameters, then the log likelihood (2.14) is convex.
Throughout this thesis, we use linear compatibility functions, which have the general
form

UC (yC ,xC ; θC) = θC (yC) · FC (x) , (2.16)

where FC : Ω → R
d(C) is a vector of features of the observation, the dimensionality

of which depends on the particular set C. The parameter vector θC ∈ R
|YC |×d(C) is

conveniently thought of as a function θC : YC → R
d(C) that takes an assignment yC

and returns an associated set of weights for the features FC .
Taking the gradient of the objective (2.15) with respect to the parameters yields

∇θL (θ;D) =
∑

k

∑

C∈C(k)

(
∇θC

UC

(
y

(k)
C ,x(k); θC

)
−

EC

[
∇θC

UC

(
yC ,x(k); θC

)
| x(k); θC

])
(2.17)

=
∑

k

∑

C∈C(k)

(
FC (x) − EC

[
FC (x) | x(k); θC

])
. (2.18)

where EC indicates an expectation with respect to the marginal probability distribu-
tion p (yC | x, θ, I). Equation (2.17) is the gradient for general compatibility func-
tions, while (2.18) is for linear compatibilities (2.16).

To calculate the log likelihood and its gradient, and thus find the optimal model θ,
we will need to be able to calculate log Z (x), the so-called log partition function, and
the marginal probabilities of each yC . In general, these both involve combinatorial
sums, so approximations must be made. Most of these are described in Section 2.3.2,
but we describe two here that are more closely related to the log-likelihood and the
objective function.

2.2.1.1 Parameter Decoupling

One simple approximation that may be made is to decouple the parameters in
θ during training. For instance, in the example described at the end of §2.1.2 and
shown in Figure 2.1, there are two types of compatibility functions, one for recogniz-
ing characters based on their appearance and another for weighting bigrams. If the
parameter vector is decomposed into the parameters for the recognition and bigram
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functions, i.e., θ =
[

θ
A

θ
B

]
, we might then decouple the parameters by assuming

they are independent, which means

p (θ | D, I) = p
(
θ

A | D, I
)
p
(
θ

B | D, I
)
. (2.19)

This gives two new parameter posteriors in the form of (2.9), which may then be
independently optimized as described in this Section (§2.2).

Decoupling the parameters in this fashion assumes certain “views” of the data are
independent, i.e., the language “view” and the appearance “view.” Only some subset
of the factors end up being present in the probability models used in the likelihood,
which can simplify training. Moreover, this makes it possible to use partial training
data. For instance, when p

(
θ

A | D, I
)

and p
(
θ

B | D, I
)

are optimized separately, we
might use two different sets of training data. For the appearance model, θ

A, we only
need the images of individual characters and their associated labels, rather than a
full sequence of characters as they might appear in context. Similarly, for the bigram
model θ

B, we do not need any image data, only a training character sequence.
This strategy ameliorates the need to acquire large portions of fully-labeled train-

ing data. Indeed, this has long been an advantage of directed generative graphi-
cal models, which make similar independence assumptions and naturally factor the
training process. One major difference is that in directed generative models, local
normalizations serve to temper the disparity in magnitudes between different types

of compatibilities. When θ̂A and θ̂B are found independently, there is no guarantee
that the magnitude of the factors using them will be scaled appropriately. In other

words, θ̂B might be fine for a probability containing only compatibilities UB to model

bigrams, but a compatibility UA using θ̂A might have much larger values and thus
(inappropriately) dominate a probability containing both UA and UB. In practice,
we have not found this to be a problem, but a small amount of data may be used

to learn linear weights on the resulting compatibilities UA and UB with θ̂A and θ̂B

fixed.

2.2.1.2 Piecewise Training

Rather than decoupling parameter types, a second simple approximation involves
what amounts to an independence assumption among unknowns for different factors.
Typical probability models involve several overlapping factors explaining the same
unknowns. This is the main reason the global normalizer Z (x) is necessary and
intractable.

Rather than evaluate the likelihood of the entire probability model, we may decom-
pose it into tractable pieces and evaluate them independently, collecting the results
as an approximate likelihood. This so-called piecewise training approximation, due
to Sutton and McCallum [111], can be justified as minimizing an upper bound on
log Z (x), which is a necessary part of the likelihood objective function L (θ;D).
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Formally, piecewise training involves approximating the likelihood with product
of “independent” terms,

p (y | x, θ, I) ≈
∏

C∈C

1

ZC (x)
exp {UC (yC ,x, θC)} (2.20)

where the normalization constant

ZC (x) =
∑

yC∈YC

exp {UC (yC ,x, θC)} (2.21)

is now a sum over the typically much smaller space YC, rather than YV . Using the
approximation (2.20) changes the likelihood objective to

LPW (θ;D) =
∑

k

∑

C∈C(k)

(
UC

(
y

(k)
C ,x(k); θC

)
− log ZC

(
x(k)

))
. (2.22)

The log partition functions log ZC (x) are much easier to compute, and the gradi-
ent of LPW (θ;D) has the same form as L (θ;D), except the marginals used for the
expectation are now computed using the individual probability “factors” of (2.20).

Both piecewise training and parameter decoupling will be important for train-
ing the models used throughout the thesis. Next, we turn to the issue of the prior
probability for models θ in the objective function.

2.2.2 Model Priors

Prior probabilities for model parameters are important because they prevent us
from drawing too many conclusions from the training data. In other words, they
capture our prior state of knowledge, which the training data must then sway us
from. There are numerous justifications for various priors, especially as they relate to
the exponential models we use (for instance, see previous work [123] and references
therein). However, for this thesis it will suffice that priors are important, and thus
are used, but the particular forms and justifications are not germane to the topics
discussed. Therefore, we only present equations for the relevant priors employed with
minimal discussion.

The simplest prior for parameters is the uniform prior,

p (θ | I) ∝ 1. (2.23)

Most of our study will involve Gaussian and Laplacian priors for the parameters. The
Gaussian prior has the form

p (θ | σ, I) ∝ exp

(
− 1

2σ2
‖θ‖2

)
, (2.24)

where ‖θ‖2 is the ℓ2 norm of the vector. The Laplacian prior has the form

p (θ | α, I) ∝ exp (−α ‖θ‖1) , (2.25)

where ‖θ‖1 is the ℓ1 norm of the vector. The objective functions for (2.24) and (2.25)
respectively are thus

PG (θ; σ) = − 1

2σ2
‖θ‖2 (2.26)
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PL (θ; α) = −α ‖θ‖1 (2.27)

with gradients

∇θPG (θ; σ) = − 1

σ2
θ (2.28)

∇θPL (θ; σ) = −αsgn (θ) , (2.29)

where sgn (θ) returns the signum of every component in θ.
Functionally, both priors tend to promote small weights, but the Laplacian prior

has heavier tails and prefers weights that are either zero or large in magnitude. While
there are so-called “hyper-priors” to be fully Bayesian about the hyper-parameters
parameters σ and/or α, we will assign these reasonable values or use cross-validation
with data to select them.

In addition, the Laplacian prior has the advantage of implicitly performing feature
selection [17]. Formally, any parameter θ that is zero, must have a likelihood gradient
magnitude (2.14) that exceeds α, or else the total gradient of the objective (2.12) is
taken to be zero for the parameter. This has the result of keeping the weight at zero,
implicitly pruning the feature from the model.

2.3 Model Inference

Even if we use the approximations given in Section 2.2 to select the model θ̂,
we still need to give a strategy for making predictions from the resulting probability

distribution p
(
y | x, θ̂, I

)
. The next section lists some of these, and we follow with

a brief description of the algorithm that may be used to approximate them.

2.3.1 Prediction Strategies

Given the observation x and a model θ̂, we only have a posterior distribution on
labels. When we need to pick a hard and fast label for each region of the image, the
question becomes what to do with that distribution; what estimator do we use? A
simple, oft-used answer is to find the most likely labeling. That is, use maximum a
posteriori (MAP) estimation:

ŷ ≡ arg max
y∈YV

p (y | x, θ, I) (2.30)

Unfortunately, we have the issue of an intractable search space YV . Simulated anneal-
ing [57] could be used to search for a maximum. In the following section, we review
another algorithm, called max-product, for finding such maxima.

The MAP estimator has an important caveat: poor predictions can result when
the maximum of the posterior is not representative of most of the other likely labelings
[39, 32]. In other words, the highest peak is not at the center of most of the posterior
volume.
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An alternative method for prediction is called maximum posterior marginal (MPM)
estimation:

ŷi = arg max
yi∈Yi

p (yi | x, θ, I) , ∀i ∈ V. (2.31)

It corresponds to choosing the label for each unknown that maximizes the probability
with all other labelings marginalized. This can often be a more effective way of con-
sidering the probabilities of all the labelings, rather than simply the maximum (joint)
labeling, as in MAP. Marginalization, however, suffers from the same computational
complexity problems. Sum-product loopy belief propagation, described next, can be
used to approximate these marginals.

In practice, the MAP estimate tends to be conservative, trying to give the most
correct labels, while MPM tends to give higher detection rates. These methods are
used variously in our experiments.

2.3.2 Belief Propagation

Because they all involve combinatorial sums or search spaces, we require approx-
imations to compute the log partition function for the likelihood objective (2.15),
the marginal probabilities for its gradient (2.18), or to make predictions with MAP
or MPM, Fortunately, there is one family of algorithms that handles all of these.
Namely, the loopy sum-product or belief propagation algorithm. In short, it exploits
the nature in which the joint probability factorizes into a product of local functions.

Recall the bipartite “factor graph” between unknowns y, represented by nodes in
the graph, and the compatibility functions (or factors, when they are exponentiated)
over the unknowns, as shown in the example of Figure 2.1 on page 22. The algorithm
operates by iteratively passing messages between the nodes representing the unknowns
and the factors. When these messages converge to a stable fixed point, the results
are equivalent to minimizing the so-called Bethe free energy, a variational method for
approximate inference from statistical physics [136]. When the factor graph is a tree,
the sum-product algorithm [60] efficiently performs exact inference. In most cases,
our graphs are not trees, and thus the results are only approximate.

Let N (i) ≡ {C ∈ C | i ∈ C} be the family of indices for the factors that neighbor
the ith unknown. This corresponds to the set of factors having yi as an argument.
The set of edges in a factor graph are thus

E (C) ≡ {(i, C) | i ∈ V ∧ C ∈ N (i)} . (2.32)

For all edges in the factor graph (i, C) ∈ E (C), the node-to-factor messages have the
general form

mi→C (yi) ∝
∏

C′∈N (i)\C
mC′→i (yi) (2.33)

so that the message from a node to a factor is the product of all the messages to
that node from all other neighboring factors. The resulting functional message is
normalized (i.e., sums to 1 over yi) for numerical stability. Note that for parsimony,
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we drop the dependence of the messages m and beliefs b on the observation x and
parameters θ.

The factor-to-node messages combine the local information expressed in the factor
(exponentiated compatibility) and the current messages from its other arguments,

mC→i (yi) =
∑

yC\{i}∈YC\{i}

exp UC (yC ,x; θC)
∏

j∈C\{i}
mj→C (yj) . (2.34)

These messages are iteratively passed throughout the graph until they converge. Con-
vergence is not guaranteed, but the algorithm empirically tends to give reasonable
results in many applications. The name sum-product derives from the form of (2.34),
which is a sum over products.

At any step in the belief propagation algorithm, the current belief (approximate
marginal probability) at a node is represented by the normalized product of messages
to that node from its neighboring factors

bi (yi) ∝
∏

C∈N (i)

mC→i (yi) . (2.35)

Usually this is only used when the algorithm has converged, but in some experiments
we will use it in the middle of belief propagation. These beliefs may then be used to
approximate the MPM prediction (2.31).

The approximate marginals of sets of nodes corresponding to C ∈ C may be
represented by the normalized product

bC (yC) ∝ exp UC (yC ,x; θC)
∏

i∈C

mi→C (yi) . (2.36)

These may be used to approximate the marginals p (yC | x, θ, I) required for calcu-
lating the expectations in the likelihood gradient (2.18).

The likelihood p (y | x, θ, I) may be directly approximated by the product ratio

b (y) =

∏
C∈C bC (yC)

∏
i∈V bi (yi)

|N (i)|−1
. (2.37)

An approximate method for finding the most likely labeling, or MAP estimate
(2.30), involves changing the summation in the factor-to-node messages to a max

mC→i (yi) = max
yC\{i}∈YC\{i}

exp UC (yC ,x; θC)
∏

j∈C\{i}
mj→C (yj) . (2.38)

Using this form in the message passing is called the max-product algorithm.
Greater detail about factor graphs and approximate inference may be found in

articles by Kschischang et al. [60] and Yedidia et al. [136].
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2.4 Summary

In this chapter, we have reviewed the framework of modeling a predictive proba-
bility distribution using a discriminative Markov model. These flexible models allow
us to conjure all sorts of associations and dependencies between unknowns that may
be useful for accurate prediction. Training these models inevitably requires approxi-
mations. We can simplify training data requirements by decoupling parameters and
simplify even already approximated optimizations with a piecewise decomposition.
The belief propagation algorithm can be used to make predictions with the resulting
predictive probability.

These models will be used throughout the thesis. By defining a compatibility that
compares the texture of neighboring regions, we use data-dependent spatial context
to improve the detection of text and signs. We may also make use of what little text
may be present in a region by creating a function that compares two characters, rating
whether they are the same or different. Thus, even when the compatibility function
responsible for identifying characters by their appearance is weak or misled by local
context, the (dis)similarity of a character compared to others can be used to boost
accuracy. How does recognition affect detection and vice-versa? By defining the asso-
ciations between the unknowns, we can easily incorporate any available information
sources simultaneously in an integrated framework that reports the probability of a
hypothesis, a meaningful, interpretable, and comparable number that is ultimately
useful for making predictions.
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CHAPTER 3

TEXT AND SIGN DETECTION

Before text and signs may be recognized, one must determine where they are in
a scene. Setting aside for the moment the fact that detection ultimately is a form
of recognition, we focus in this chapter on improving interpretation-free detection.
Several such bottom-up feature-based approaches to text detection were reviewed in
Chapter 1 (§1.2). Most systems presently in use rely on some form of machine learn-
ing to achieve good performance on the detection task. While the best approaches
use very powerful and discriminative features, many still rely on heuristic rules for
doing layout analysis on regions identified as text. Heuristics have limited application
because they tend to be more difficult to craft as target data becomes more com-
plex, and their parameters are seldom optimal. For this reason, we advocate a more
complete machine learning approach for detection.

Text detection approaches with integrated, learned layout analyses have only re-
cently appeared. One relies on uninformed segmentation [137], while the other uses an
edge detector [104]. Both of these methods have drawbacks, as described in Section
1.2. Our method, proposed contemporaneously, is designed to robustly detect text
and signs at many scales and world orientations through the use of powerful local
texture features. However, the main contribution is the inclusion of data-dependent
spatial context for layout analysis with a model learned from training data.

Portions of this chapter are reprinted, with permission, from previous papers ap-
pearing in the 2004 IEEE International Workshop on Machine Learning for Signal
Processing [124], c©2004 IEEE, the 2005 IEEE Workshop on Computer Vision Aids
for the Visually Impaired [107] c©2005 IEEE, and a technical report [123].

3.1 Overview

Signs may be of arbitrary size, color, and shape, and if the definition is broadened
beyond text to other visual classes of signs, the scope of the term “sign” becomes
enormous (see Figure 3.1). While previous work on the more specialized text de-
tection tasks has either used a local classifier or layout heuristics, the more generic
sign detection task is more complicated. Heuristics are more prone to failure or will
become increasingly difficult to engineer as we allow the textual input to have more
complicated (though still human readable) layouts. Moreover, signs containing or
solely consisting of logos also have properties that can be described well with features
we will apply to the problem. This difficult detection task will require a generic, but
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Figure 3.1. Example input scene for sign detection. Signs may contain a variety of
fonts, perspectives, lighting conditions, and logos.

very powerful method for classifying sign and non-sign regions. For us, this comes in
the form of a discriminative Markov field.

The advantages of this model are twofold. First, since it is discriminative, it need
not describe how the data is generated but only how to distinguish among the classes
of interest. Traditional machine learning methods like logistic regression or neural
networks and newer techniques such as AdaBoost and Support Vector Machines are
all examples of discriminative models that have been successfully applied to the text
detection problem. The second advantage is that discriminative Markov fields can
model the spatial context and dependencies among regions of an image. Formal
probabilistic models accounting for such dependencies in images have existed for two
decades [37], however they are now seeing more widespread use with greater compu-
tational power, effective approximate inference methods, and especially the advent of
the discriminative model, which often produces better results.

The value of contextual information in computer vision tasks has been studied
in various ways for many years (e.g., [127, 110, 54, 82, 61, 117, 18]). Two types of
context are important for the region labeling problem: label context and data con-
text. By data context, we mean the image data surrounding any region in question.
Data context can be of almost any scale, from the immediate vicinity of the region to
the entire image or an image sequence. Similarly, label context consists of any labels
surrounding a region in question. In the absence of label context, local regions are
reasoned about independently. Disregard for the (perhaps unknown) configuration of
labels often leads to isolated false alarms and missed detections upon classification.
Likewise, the absence of data context means ignoring potentially helpful image infor-
mation from around the region being classified. Both types of context are important.
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For example, since neighboring regions often have the same label, we could en-
courage smoothness by penalizing label discontinuities. Such regularity is typically
imposed without regard for the actual data in the regions. The downside is that when
the local evidence for a label is weak, the continuity constraints typically override the
local data. On the other hand, if the neighboring data is considered, local evidence
for a region to be labeled “sign” might be weak, but witnessing a strong edge in the
neighboring region could bolster belief in the presence of a sign at the site because the
edge indicates a transition. Thus, we will consider the labels and data of neighboring
regions when making classification decisions.

The next section details the structure of the model used for contextual text and
sign detection. After that we briefly review the image features, both local and contex-
tual, used with the model. Then we demonstrate the results with a set of experiments
contrasting local detection methods with the contextual approach. We conclude the
chapter by enumerating the contributions of this approach.

3.2 Markov Field for Detection

Markov fields were reviewed in Chapter 2. For the detection task, the unknowns
will represent small regions of the image, and each region takes the label of either
sign or background. We will decompose an input image into a regular grid of squares
and assign labels to these regions. Because its discriminative nature easily allows it,
the evidence for labeling each region will be drawn from parts of the image beyond
the region itself, but the net effect is that each pixel belonging to a region is assigned
the same label. This has practical effects and will require some special treatment of
the data for training. We discuss this after introducing details of the model.

3.2.1 Detection Model

In this context, y represents the grid of squares, and x is of course the observed
image. The usual discriminative Markov field model (repeated here for convenience)

p (y | x, θ, I) ≡ 1

Z (x)
exp

{
∑

C∈C
UC (yC ,x; θC)

}
(3.1)

will employ two types of compatibilities. One is local, relating image features to a
label for a particular region, and the other is contextual, relating image features to
the labels for pair of neighboring regions. Both of these take the usual linear form

Ui (yi,x, θi) = θi (yi) · Fi (x) , i ∈ V (3.2)

Uij (yi, yj,x, θij) = θij (yi, yj) · Fij (x) , i ∼ j, (3.3)

where i ∼ j indicates that regions i and j are neighbors in the grid. Note that for
parsimony we have modified the more general set-based indexing of the compatibil-
ity functions, i.e., UC where C = {i}, to a simple subscript Ui. The factor graph
representation of the model is shown in Figure 3.2.
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Figure 3.2. Factor graph for contextual detection. White factors relate image fea-
tures to a single label, while shaded (green) factors associate image features such as
texture gradients with pairs of neighboring labels. All factors are implicitly dependent
upon the observation x, but these edges are omitted for clarity.

Although the Fi indicates the region of the image x from which the features are
to be extracted, they are the same features for all regions. Similarly, Fij are the
same features, but extracted from different regions. Thus, the field is effectively ho-
mogeneous (translation invariant). While the unique compatibilities rely on features
from a particular region of the image, all compatibilities of the same class (local or
contextual) use the those features in the same way.

The parameters θi are “tied” for all regions; that is, θi = θj for all i, j ∈ V .
However, we use anisotropy in the contextual factors, giving up rotational invariance,
so that the model may learn any orientational bias of the labels that may be mani-
fest in the data. Specifically, this means that while some contextual parameters θij

are tied, they are only tied between compatibility functions that represent the same
orientation between neighbors, horizontal or vertical. Furthermore, the field is not
symmetric. That is, θij (yi, yj) 6= θij (yj, yi), so that “left-of” and “above” arrange-
ments are distinct from “right-of” and “below.” Once again, this flexibility allows the
model to learn any preference for making such distinctions from the data.

3.2.2 Model Training

Breaking the image into regions is a way of reducing the computational overhead
of image labeling, since it does not require that classifications be made for every
pixel. This is a reasonable approximation since local image properties like texture,
which forms the basis of our image features, tend to be fairly static except at mean-
ingful boundaries (e.g., between a building and sky). However, the strategy can be
problematic when the training data contains image regions that straddle such bound-
aries. Unless the model or training method is designed to handle such a grouping of
heterogeneous data, the approximation may be detrimental to performance.

Depending on the objective of the system, this issue is related to the so-called
“multiple instance learning”(MIL) problem [27]. There, a set of instances are provided
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Figure 3.3. Decomposition of images into regions on a grid. Left: Original image
with ground-truth contour. Center: Grid overlaid on foreground sign mask. Right:

Pure sign (green), background (red), and mixed (yellow) areas.

to a classifier and it must determine whether any positive instances are present.
During training, the label of the set is provided (whether any positive instance is
present in the set), but the positive instances are not identified. When boundaries
are manually drawn around signs and text in an image, some grid squares naturally
straddle these boundaries. In this case, the positive instances would be the pixels
within the drawn boundaries (see Figure 3.3).

The question for us becomes, given the Bayesian training methodology defined in
Chapter 2 (§2.2), how should this problem be handled? We propose and investigate a
few alternatives involving how grid regions that straddle manually drawn boundaries
should be treated. In all cases, grid regions that do not straddle a boundary consist
of purely sign, or purely background pixels. Such regions may clearly be given Sign or
Background labels in the training data. Possible alternatives regarding the remaining
regions include

1. Giving them positive Sign labels, as in the MIL framework

2. Giving them negative Background labels, thereby saying we are only interested
in detecting purely foreground regions

3. Give them a label by thresholding the percentage of pixels manually labeled
sign

4. Giving them no labels at all, effectively omitting them from the training data

We explored options 1 and 3 in previous work [124, 123], and found them less than sat-
isfactory. Later, we partially attempted option 4, but abandoned the spatial context
of the model to do it [107].

We found that using only pure regions—those containing only sign or no sign
at all—we could achieve better results with a strictly local classifier trained on this
type of data [107], than with the contextual classifier on the MIL-like data [123].
The features and the Markov field model are not equipped to handle the MIL situa-
tion optimally. However, context and dependency modeling can still bring important
performance improvements. Therefore, rather than abandoning the contextual advan-
tages of the Markov field model or forcing the data to be labeled in a suspect fashion,
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we will use the laws of probability to incorporate all of the spatial information, while
leaving the mixed regions unlabeled. This allows the model to form its own beliefs
about whether such regions should be labeled Sign or Background, without attempting
to train it to take an unnaturally rigid stance on such data.

A näıve approach for giving the mixed regions no labels is to literally omit them
from the training data. This is reasonable for a local model, where predictions are
made independently, but it is the wrong approach once spatial dependencies are in-
troduced. In the grid for the image, the mixed regions would simply be removed from
the graph, eliminating all compatibility functions involving such regions. This will
be problematic because features and nodes at the interface of Background and Sign

regions are discarded and the model cannot learn the properties of the transitions
between different region types.

Properly training the model to incorporate the spatial dependencies with incom-
plete labels involves using a marginal conditional likelihood in the parameter posterior.
If Dy only contains some of the labels for the images Dx, then there are “missing,”
unobserved labels Du that must be accounted for. These are the yellow regions in
Figure 3.3.

Recall that maximizing the parameter posterior p (θ | D, I) involves the likelihood
p (Dy | Dx, θ, I). By the product rule of probability, we have that

p (Dy | Dx, θ, I) =
p (Dy,Du | Dx, θ, I)

p (Du | Dy,Dx, θ, I)
(3.4)

for all values of Du. Therefore, to compute the marginal conditional likelihood (3.4),
we may pick any values we like for the unobserved labels Du. Computing the nu-
merator is the same as when all the labels were observed (since we may pick any
assignment for Du). Because we have a Markov field, it is straightforward to enter
the given labels Dy as evidence and compute the conditional likelihood of the denom-
inator in a similar fashion. Using the product rule is much simpler than explicitly
marginalizing Du from the joint probability in the numerator via summation, yet we
still refer to it as a marginal.

Training our model to be more effective with pure regions while incorporating spa-
tial dependencies now only involves substituting the marginal conditional likelihood
(3.4) into the parameter posterior (i.e., Eq. (2.10) on page 23) for optimization. We
show in the experiments of section 3.4 that the model with spatial context greatly
improves detection over the typical local model and that properly marginalizing un-
observed labels during training is necessary for accurate results.

3.3 Features

A detailed description of the features we use for sign detection may be found in a
prior technical report [123], but we very briefly review them here, followed by details
of how they are actually employed by our model.
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3.3.1 Feature Overview

Rather than simply using functions of single filters (e.g., moments) or edges, we
use a richer representation that captures important relationships between responses
to different scale- and orientation-selective filters. To measure the general textural
properties of both sign and especially background image regions, we use the statis-
tics of filter responses described by Portilla and Simoncelli [93], which include the
correlations between responses to steerable pyramid filters at different scales and
orientations. A steerable pyramid of four scales and four orientations is computed
over the entire image. Statistics of the filter responses within each region are then
calculated.

A biologically inspired non-linear texture operator for detecting gratings of bars
at a particular orientation and scale is described by Petkov and Kruizinga [92]. Scale
and orientation selective filters, such as the steerable pyramid or Gabor filters, re-
spond indiscriminately to both single edges and one or more bars. Grating cells,
on the other hand, respond selectively only to multiple bars (three or more). This
property is an ideal match for detecting text, which is generally characterized by
a “grating” of strokes. The filter is implemented by a non-linear function ensuring
strong responses to bar detectors (polarity-sensitive oriented filters) along a receptive
field line orthogonal to the bars. We use as features local statistics of these filter
responses for several filter scales. In particular, responses to grating filters at eight
scales are computed only for vertical strokes with a horizontal orientation. Like the
steerable pyramid filters, statistics of the grating filter responses within each region
are then calculated. We should note that although the statistics are calculated only
for responses within a particular grid region, the grating filter responses can depend
on image data far beyond this region. This way, text at scales much larger than the
individual grid regions can be detected.

Additionally, we use normalized histograms of the hue and saturation within each
grid region. This also allows us to measure color discontinuities between regions. Since
hue can be unreliable when saturation is low, only pixels with saturation exceeding
a threshold (here, 0.1 on a [0, 1] scale) are counted in the histogram. Furthermore,
the hue histogram is weighted to so that each pixel’s contribution is its saturation.
Thus, weakly colored pixels do not contribute as much to the color distribution. We
use eight evenly spaced bins for hue to roughly characterize the color and ten bins for
saturation to avoid over-quantization with relatively small windows.

A graphical overview of all these features is shown in Figure 3.4 on the following
page.

3.3.2 Feature Details

Here we describe the two classes of features used in the model: the local features
Fi and contextual features Fij . As alluded above, local features Fi are comprised
of the various steerable pyramid and grating filter statistics, along with the color
histograms. These are more precisely decomposed into the following sets; we describe
the nature of each type of set and the number of sets implied:
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Figure 3.4. Graphical overview of detection features on (a) an input image. For
an image region, statistics including the cross-correlation of filter responses at (b)
different orientations of the same scale and (c) different scales of the same orientation
are calculated. Non-linear grating filters are used to help detect text for a particular
scale and orientation. Strong responses to (d) polarity sensitive oriented filters are
required along a receptive field line and combined to give (e,f) a grating response.
For (g) an image decision region, normalized histograms of (h) hue and (i) saturation
are also used.
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• Raw pixel statistics (e.g., range and central moments) [1]

• Low-pass image statistics

– Kurtosis [1]

– Skew [1]

• Average magnitude

– Pyramid channels [16]

– Low-pass image [1]

– High-pass residual [1]

• Auto-correlation of low-pass image at each pyramid level [5]

• Auto-correlation of magnitude of each channel and pyramid level [16]

• Cross-correlations between channels at the same pyramid level

– Magnitudes [1]

– Real-values [1]

• Cross-correlations between channels of the same orientation and neighboring
pyramid levels

– Magnitudes [1]

– Real-values [1]

• Variance of the high-pass residual [1]

• Color histograms

– Hue [1]

– Saturation [1]

• Grating filter statistics [1]

For instance, when we calculate the auto-correlation, we keep the 13 unique central
values of a 5 × 5 window. Each of these values is collected into one set of features.
Since there are four scales (or pyramid levels) and four orientations (or channels) in the
pyramid there are 16 such sets. Furthermore, all of the magnitude cross-correlations
between channels at the same level are collapsed into one set.

These 50 groups are then used for the contextual features. Each is a set of image
features for a local grid region. To compare neighboring image regions, we use as
contextual features the ℓ2 norm of the difference of each set. These norms of differences
between sets are collected in the 50 contextual features Fij .
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Figure 3.5. Example scene image with ground truth contours around sign regions.

3.4 Experiments

In this section we describe experimental results testing our contextual discrimi-
native model for sign and text detection against purely local classifiers and a layout
heuristic. First we briefly outline the experimental data, followed by our procedure
and results.

3.4.1 Experimental Data

Images of downtown Amherst, MA were collected with a Nikon Coolpix 995 during
September 2002. A total of 309 24-bit color images of size 1536 × 2048 were taken
during various times of day throughout the month.1 Signs in the image were then
labeled (masked) by hand. The general criteria for marking a sign were as follows:

• it should be readable (if text) or recognizable (if a logo) at 25% magnification
(384 × 512)

• if a sign’s natural border is reasonably close to the text or logo, extend the mask
to the border, otherwise the mask should extend to roughly 128-256 pixels in
any direction beyond the text or logo.

It should be noted that these were not hard and fast rules, but heuristic guidelines.
There could be small signs present in an image that are not labeled as such because
they can not be read legibly, but could still have their text detected. The second
guideline allows color continuity and presumed edge evidence for signs to be used to
a reasonable extent. An example is shown in Figure 3.5.

1Available from <http://vis-www.cs.umass.edu/projects/vidi>.
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3.4.2 Experimental Procedure

For our experiments, we scaled the images by half to 768 × 1024 and measured
the features described in Section 3.3 for overlapping 64 × 64 regions. This yields a
23× 31 grid. Whereas the masks described above have roughly pixel precision, these
regions might be composed of all sign, no sign, or something in between. As described
in Section 3.2.2, how these regions are labeled for training and testing impacts the
results.

In preliminary work, we treated the task as a binary classification problem [124].
Here, we give only those regions entirely consisting of masked pixels the label Sign

and those regions entirely consisting of unmasked pixels the label Background. All
other regions (those straddling the boundaries in the manual segmentations) were left
unlabeled.

A contextual model with any mixed regions removed during training will likely
not have any neighboring nodes of differing classes. The spurious learned result is
an expected value of zero for any feature on an edge between Sign and Background

regions. To prevent this, we set θij (yi, yj) = 0 for yi 6= yj when training with these
regions removed. Although this improves the results over leaving such parameters free
during learning, we find in the next section that simply removing the mixed regions
performs much worse than the alternatives, even the context-free local model.

A “local” or “context-free” model results when only the local compatibility func-
tions Ui in Equation (3.2) are used in the probability (3.1). In training such a model,
the unlabeled regions cancel from the marginal likelihood optimization (3.4). We
employ a Gaussian prior (2.24) on both the local parameters θi and the contextual
parameters θij, however the Gaussian parameter σ is not necessarily the same for
both classes of parameters. Next, we describe how this “hyper-parameter” is chosen.

The images are evenly and randomly split into ten subsets for evaluation. In a
ten-fold cross-validation procedure, we iteratively held out one set for testing. Of the
remaining nine sets, four were used for an initial training set where we trained models
with several different values of the hyper-parameter σ (evenly spaced on a log-linear
scale). The value of σ that yielded the highest likelihood on the remaining five (of
nine) sets was used to train on all nine of the training subsets. When an optimal
σ was found for the local compatibility function parameters in a context-free model,
this σ was fixed and an analogous (one-dimensional) search for the optimal σ for the
contextual compatibility function parameters was conducted. The tenth subset was
then used for evaluation of the model trained on the other nine, and all ten folds are
collected for the results presented below.

To try and emulate the contextual nature of the discriminative Markov field,
we also compare a simple hysteresis method. Using the local classifier, anywhere a
prediction of Sign is made with a particular threshold p > τ , any neighboring region
(in a four neighbor system), is also classified as Sign if it is above the lower threshold
p > τ/ 2.
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Local                     AUC=0.9555
Contextual             AUC=0.9650
Contextual − Mixed  AUC=0.8895

Figure 3.6. Comparison of local and contextual sign and text detectors with
the receiver operating characteristic (ROC) curve as parameterized by the posterior
marginal of each region.

3.4.3 Experimental Results

With our features, we have compared the results using only a local discriminative
classifier to the contextual discriminative Markov field. Evaluating the results on
regions that are purely sign or background, we show in Figure 3.6 three receiver
operating characteristic (ROC) curves based on the posterior marginal probability

p
(
yi | x, θ̂, I

)
for each region. The curves characterize the trade-off between false

positives and false negatives. The results of two methods for training the contextual
model are shown: one that optimizes the marginal likelihood and one that simply
eliminates mixed regions from any graph, maximizing the resulting (fully observed)
likelihood. The unqualified “contextual” model refers throughout to the one learned
using the marginal likelihood.

Figure 3.7 shows some example detection results. The signs missed entirely by
the contextual classifier are shown in Figures 3.8 and 3.9 on page 44. Note that the
absolute pixel scale of the signs are the same both within and across the two figures.

Tables 3.1 and 3.2 evaluate the detections at the sign level, rather than the compo-
nent region level. With MPM prediction (c.f., Eq. (2.31)), the threshold for classifying
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Figure 3.7. Example contextual detection results: green (solid) boxes indicate cor-
rectly detected regions, while red (dashed) boxes are false positives. Cyan contours
are the manual ground truth.
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Figure 3.8. All the difficult or unusual signs missed by the contextual detector.

Figure 3.9. Conspicuous signs missed by the contextual detector.
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Table 3.1. Sign detection results with MPM prediction.

Local + Contextual -
Local Hysteresis Contextual Mixed

Sign Detection Rate 85.9±1.9% 87.4±1.8% 84.7±2.0% 100±0%
Average Coverage 74±1.6% 80±1.4% 88±1.2% 100±0%
Median Coverage 81% 89% 100% 100%

False Pos Regions/Image 1.1±0.097 1.1±0.093 0.47±0.050 0.91±0.034
False Pos Area/Image 0.97±0.097% 1.3±0.12% 1.0±0.14% 67±1.9%
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Figure 3.10. Comparison of sign coverage between the local and contextual clas-
sifiers with MPM prediction. Left: Scatter plot of the coverage of the local and
contextual classifier on each sign. The diagonal line indicates equal coverage perfor-
mance. Right: Histograms of coverage for each classifier.

a particular region as Sign is p > 0.5. In both tables, sign detection rate is the per-
centage of signs having at least one region covering it labeled as Sign. Coverage is the
percentage of regions detected on a sign. False positives are counted as the number
of connected areas, rather than individual regions. This is because in a visual sign
recognition framework, the connected areas are passed as input to a recognizer. To
give an idea of scale, we also present the total false positive area, as a percentage of
the image size. Figure 3.10 quantitatively compares the sign coverage for each clas-
sifier, showing how much of each sign is detected, while the examples in Figure 3.11
on the following page qualitatively illustrate this difference.

Using the ROC curve in Figure 3.6, in a post hoc fashion we determine the equal
error rate (EER) for each classifier at the region level. EER is the point on the curve,
parameterized by the classifier threshold on marginal probability, where the region
false positive rate equals false negative rate (the complement of the region detection
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Figure 3.11. Visual comparison of sign detection coverage with local (left) and
contextual (right) classifiers.
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Table 3.2. Sign detection results at the region-level equal error rate for prediction
threshold.

Local Context

Patch Equal Error Rate 10.5% 7.8%
Threshold p > 0.0269 p > 0.0026

Sign Detection Rate 97.6±0.84% 97.0±0.94%
Average Coverage 93±0.81% 92±0.99%
Median Coverage 100% 100%

False Pos Regions/Image 9.9±0.44 10±0.42
False Pos Area/Image 13±0.66% 43±1.5%

Figure 3.12. Signs detected with logos (rather than text) as prominent features.

rate). Table 3.2 reports the rates and the thresholds at which they are found along
with the resulting sign detection metrics.

Figure 3.12 shows signs where a logo is equally or more prominent than any text.

3.4.4 Discussion

With the addition of contextual information, the “missing” area under the ROC
curve is reduced by more than 21%, so the contextual model achieves more detected
regions for the same number of false positives. Example detection results in Figure
3.7 show that text and signs at multiple scales, orientations, typefaces, and languages
can be detected, even on backgrounds that are typically associated with non-text
(e.g., brick and wood grain). The performance of the contextual classifier with mixed
regions simply removed during training performs much worse than the other models.
This confirms that when spatial context is important, removing nodes from the graph
during training is the wrong approach and results in optimizing the “wrong” function.
With one model, we can detect all manner of signs, including those that are mostly
or only logos (Figure 3.12).

We may draw a few conclusions from Table 3.1. First, the default sign detection
rate is perhaps low. However, a more detailed analysis of the data shows things are
not as bad as they may initially appear. Of the 48 signs that are missed completely by
the contextual classifier, 41 suffer from one or more of the following conditions: small
and blurry (19%), projective foreshortening (15%), low contrast (44%), behind glass
with specular reflection (35%), or text at an uncommon orientation (11%). Horizontal
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Figure 3.13. Color and grayscale image comparison. Although color features are
used, wavelet features (and any image gradients) are calculated on the gray scale
image, which has low contrast when compared to the color image.

and vertical text (±30◦) is most common, so these textural properties are learned by
the model, but any remaining text (45 ± 15◦) does not appear often enough to be
learned well. Signs do not need to be strictly parallel to the image plane, as many
signs with foreshortening are in fact detected. However, failure can occur when the
projective distortion shrinks the space between letters enough to virtually eliminate
the edges and grating effect. The MPM threshold is conservative, keeping the false
alarm rate very low, but causing these signs to be missed. By lowering the threshold,
we can detect 97% of the signs, although with many more false alarms.

In addition, although color features (histograms) are used, the features that are
similar to image gradients are calculated on the grayscale image. Figure 3.13 shows
that while some text is easily seen in the color image, it can be very low contrast in
the corresponding grayscale image. Signs like this are thus frequently missed by the
detector (Figure 3.8).

The net effect of removing the mixed regions from the training data is a severe
over-fitting of the “continuity” properties of the model. That is, all of the signs are
detected, but strong label continuity effects cause too much of the image to be labeled
Sign, resulting in a drastic increase in false positives.

Interestingly, there is no significant difference2 between the base sign detection
performance of the local and contextual classifiers. However, by studying the cov-
erage of the detected signs we can quickly see the stark difference. The contextual
classifier does a significantly better job of detecting more of each sign. In fact, the
discriminative Markov field has greater coverage than the local classifier on 90% of
the signs. Moreover, on the signs it detects, the contextual detector has complete
coverage of 56% of them, compared to 34% for the local detector.

We also note that the contextual detector has half as many false positive regions
per image. If a recognizer is complex or computationally intensive, reducing the
number of false positives is important for overall system speed.

Finally, we examine the equal error rate (EER) performance of each classifier in
Table 3.2. By dropping the acceptance threshold, many more signs are detected,
and the coverage of the local classifier rises to meet the discriminative Markov field.
However, there are many more false positives. Thus, while recall (true positives or
detections) is high, the precision (or true negatives) suffers greatly.

2Significance is assessed by a paired, two-sided sign test.

48



In conclusion, the “default” prediction mode (MPM) tends toward slightly lower
sign-level recall, for both methods but the discriminative Markov field yields fewer
false positives and a markedly greater coverage of the signs it detects. Moreover,
nearly all the signs that are missed could be detected with richer features and training
data; the rest may simply too difficult to detect without filtering false positives with
interpretation. We discuss this further in the chapter’s conclusions.

3.5 Contributions

There are three primary contributions of our model and approach to generic text
and sign detection: the use of a learned contextual dependency, simultaneous multi-
scale analysis, and using marginalization to discard boundary cases while preserving
spatial context for improved performance.

3.5.1 Learned Layout Analysis

While many others have employed discriminative methods for detecting text, none
of these have included a learned model for incorporating spatial dependencies. Our
aim here is to find any incidental text or signs in an image. As such text goes beyond
ordinary horizontal or vertical layouts or undergoes perspective distortions, manual
heuristic layout analysis will become more complex, and likely more brittle. Our
model requires no hand-tuning of parameters yet still takes advantage of the frequent
spatial continuity of text regions.

One other learned layout analysis model appeared contemporaneously [137], but it
suffers from the limitation that it depends on a prior, uninformed segmentation stage
before classifying regions as text or non-text. As noted earlier, uninformed segmen-
tation becomes virtually impossible as the image degrades. While the discriminative
Markov field model described here only detects text regions (rather than give a bina-
rization of text and background), we show in subsequent chapters how to move from
text regions to detecting and identifying individual characters in a more informed,
top-down fashion.

3.5.2 Multi-Scale Analysis

We calculate features in the image at several scales that capture local or very
broad portions of the image. In most other approaches to multi-scale text detection,
the features are computed for a particular scale of text, a classifier is subsequently
applied for that scale, and this process is repeated for a range of scales.

In contrast, we similarly compute the range of multi-scale features, but these are
all simultaneously used in one classifier that detects signs of any scale. To be sure,
prediction in the Markov field model entails some computational burden, but this is
outweighed by the benefit of a learned use of context, balanced by the elimination
of multi-scale classification, and mitigated by the continuing development of faster
hardware and approximate inference algorithms.

49



3.5.3 Spatial Context without Boundary Cases

Discriminative models with latent attributes have recently appeared [95, 112].
However, in training these models, the latent properties are always latent, and the
observed properties are always observed. For example, the identity of an object is
always given in training data, but the constituent parts are unlabeled, or in text,
noun phrase chunking might be given while parts of speech tags are modeled but not
observed. In these cases, the latent attributes serve an auxiliary purpose; they provide
added structure to the model to aid in prediction of some other primary property of
interest.

In our model, all unknowns are of the same type, namely, whether a region is sign.
However, given our agglomeration of image pixels, there are some regions for which
the complementary labels Sign and Background do not make sense. By freeing the
model to focus discriminative capability on those regions that do meet the pure label
criterion, we can improve the predictive performance of the model on these regions.
We have also demonstrated that simply eliminating the portions of the model that
do not meet the labeling guidelines performs rather poorly. The marginalization we
have proposed is necessary for improved performance.

3.6 Conclusions

Our experiments have demonstrated the utility of linear and non-linear texture
features for text and sign detection and a large improvement in detecting more of a
sign by modeling spatial context.

A few modifications could improve performance. First, adding more extreme
text orientations and low contrast signs to the training data could allow the system
to detect more of the signs missing in Figure 3.8. Second, more complex features
that employ color gradients might also aid in detecting the class of false negatives
highlighted in Figure 3.13 and also make the entire system more robust. Finally, it
is probable that the only way to reduce the large numbers of false positives incurred
when the threshold is dropped to increase detection is to introduce a measure of
interpretation. After discussing ways of unifying all of the information useful for
recognizing text in the next chapter, we develop a method for more closely tying
detection and recognition together during learning. Chapter 5 therefore discusses
how we introduce interpretation to the detection process without necessarily explicitly
performing recognition.
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CHAPTER 4

UNIFYING INFORMATION FOR READING

As we have said many times, several sources of information factor into the reading
process. This has been known for some time. What we require is a computational
model that can piece these factors together in a unified framework. In this chapter,
we propose a model that brings together bottom-up and top-down information as well
local and long-distance relationships into a single elegant framework. Continuing with
data-dependent contextual models, we present a method that smoothly integrates
character similarity with traditional character appearance and language methods.
The same unified probabilistic framework will also allow us to incorporate higher-
level language information, such as a lexicon. Our model adapts to the data present
in a small sample of text, as typically encountered when reading signs, while also
utilizing higher level knowledge to increase robustness.

Portions of this chapter are reprinted, with permission, from papers appearing
in the 2006 IEEE Conference on Computer Vision and Pattern Recognition [125],
c©2006 IEEE, and 2007 IAPR International Conference on Document Analysis and
Recognition [126], c©2007 IEEE.

4.1 Overview

Generative hidden Markov models (HMMs) have long been a stalwart of research
in OCR. Their advantages include incorporating some level of label context into the
prediction process and an unsupervised training setting. Here, we present develop-
ments with discriminative Markov models, which are similar, but have many powerful
advantages over HMMs.

Section 1.3.3.2 described how character similarity has been used to ensure that
characters of similar appearance are given the same label. The principle drawback
of these approaches was that the comparison and labeling stages were segregated
in separate processes, with no or only ad hoc feedback. Thus far, the dissimilarity
between character images has not been used as evidence against giving them the
same label, but this is also a useful approach. The previous clustering-based methods
only ensure that all cluster members are given the same label; they do not prevent
different clusters from being assigned the same label. One model we present in this
chapter smoothly integrates character similarity and dissimilarity with the recognition
process.

Consider the example in Figure 4.1. The top row of text is the result of reading
the sign at the left using only basic information about character images, and the
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Information Result
Appearance FIeet

Appearance, Language Fteat

Appearance, Language, Similarity Fleet

Similarity → Appearance, Language Fteet

Figure 4.1. A query image (left) is interpreted with varying amounts of image and
linguistic information. Only when unified with similarity information is the other
contextual information constrained to global consistency.

lowercase l (ell) is mistaken for an uppercase I (eye). The next result combines
the image information with some basic language information. This does not correct
the error but in fact introduces new errors. The image and language information
is based on local context and does not require any global consistency. By factoring
in character similarity information in the third line, the errors are corrected; the
two e characters that appear the same are given the same label, while the l and
t characters of dissimilar appearance are given different labels. In contrast, using
similarity information first to determine which characters are the same and then
identifying character clusters, as shown in the last line, does not perform as well as a
unified model. This is particularly true when the number of characters is very small.
We present in the first part of this chapter a model that incorporates all of these
important information sources.

Higher-level knowledge like a lexicon also helps improve recognition. When images
are of low-resolution, a lexicon can inform an otherwise unreliable character recog-
nizer [52]. Additionally, humans are more reliable at reading characters when they are
present in words, or pseudo-words [97]. Therefore it is important for us to consider
how this information may be incorporated in the recognition process. We present a
simple addition to our discriminative model that incorporates a bias for strings from
a lexicon. Our model allows efficient approximate inference schemes by eliminating
the need to consider all possible strings, only considering entries from the lexicon.
Notably, we can speed this process even further by applying an approximate “sparse
inference”technique: by eliminating characters with weak support from consideration,
we drastically reduce the set of words that must be considered.

In total, by fusing the available information sources in a single model, we improve
overall accuracy and eliminate unrecoverable errors that result from processing the
information in separate stages.

4.2 Markov Models for Recognition

Just like the discriminative Markov field for detection in Chapter 3, a similar model
for recognition involves defining parameterized compatibility functions for the data
and the labels. For the recognition problem, the model input will be size-normalized
character images and the output is the predicted character labels. In this section we

52



will outline the details of our model, including the form of the input and features, the
relevant information being utilized, and the particular compatibility functions that
are learned to form the model.

Our model and the subsequent experiments make the following assumptions:

1. The input is all of the same font

2. Characters have been segmented (that is, the coordinates of their bounding
boxes are known), but not binarized

3. Word boundaries are known

Our conditioning information I consists of these in addition to our other basic in-
formation. Assumption 1 is especially reasonable for signs containing small amounts
of text. Although there certainly exist exceptions to this, our database of signs has
only a few that stretch the assumption, and it is not difficult to imagine introduc-
ing a factor for the proposition that two characters or words are in the same font
when its truth is unknown. Assumption 2 is not ideal or the most general, but with
high-resolution digital cameras, adequately lit scenes and an area of interest that oc-
cupies sufficient area on the sensor, it is reasonable. Note that it does not require a
binary image (as shown in Figure 1.5 on page 12), only a rough localization of each
character. Finally, assumption 3 is not overly restrictive since these could mostly be
found by modeling intra- and inter-word character spacings. These assumptions are
all warranted and are not overly constraining for the problem we are trying to solve,
namely, reading short amounts of text found on signs in images of scenes. Looking
ahead, Chapter 6 will present a model that eliminates assumptions 2 and 3, at the
cost of sacrificing the use of character similarity information.

In the remainder of this section we build up our model from its constituent com-
patibility functions, based on the assumptions listed above. These will reflect several
useful sources of information. Namely

• character appearance (what do As and Bs tend to look like? )

• language properties (what letters tend to follow other letters? where do we expect
capital letters? )

• character similarity (which characters look similar or different? )

• lexicon (is this string more likely to be elm or clm)?

Each of these are combined effortlessly into a unified model for character recognition
with the basic form outlined in Chapter 2, but slightly different from the manifestation
used for detection in the previous chapter.

Let x be the input image representation of a string of characters to be recognized
and y be the corresponding string of character labels. The index i now represents
a particular character in the string, and the set of labels Y is the same for every
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character yi ∈ Y . Later in this section we describe the particular features and com-
patibility functions used for predicting y from x, as outlined above. Eventually, we
will want to compare the results of the model with various factors or information
sources included. Since we denote the assumptions or information I that a particular

model p
(
y | x, θ̂, I

)
employs, this is used to also indicate the information sources

(compatibility functions, or factors) being used. To this end, when a particular class
of compatibility function UA is used, we indicate this by conditioning the model on
the corresponding “information” IA.

The model resulting from the combination of the compatibilities we will define is
shown in Figure 4.2 on the next page. All of the various classes of factors may be
combined in one model, but we show them in two separate graphs for clarity. The
top graph focuses on the “adaptive” or locally consistent model that uses similarity
between the character images from one font as part of the recognition process. The
bottom graph demonstrates how factors may be introduced to promote the recognition
of strings as lexicon words. Details of each of these factor types is given in the
remainder of this section.

4.2.1 Appearance Model

The most obvious component of a recognition model involves relating character
appearances to their identity. Gabor filters are an effective and widely used tool
for feature extraction that decompose geometry into local orientation and scale [25].
Their success in handwriting recognition [26] and printed character recognition [22]
demonstrates their utility for this task. Using a minimally redundant design strat-
egy [75], a bank of 18 Gabor filters spanning three scales (three full octaves) and six
orientations (30◦ increments from 0◦ to 150◦) is applied to the grayscale image x,
yielding complex coefficients f that contain phase information. The real and imagi-
nary parts of the filter are even and odd functions, respectively.

Taking the complex modulus of the filter outputs |f | provides phase invariance
and makes the responses less sensitive to translations of the input; see Figure 4.3.
Practically, this makes the filter responses invariant to the polarity of the text (white-
on-black versus black-on-white). After filtering, the complex modulus of each response
image is downsized by applying a Gaussian blur and downsampling. This adds a slight
amount of insensitivity to feature location for different fonts, but it mostly serves to
reduce the ultimate size of the feature vector used as input to the model. All of the
downsized responses are collected into a single feature vector for each character, di,
which is a function of the original image x.

Given a relationship between the identity of the character and the filter responses,
which signify local scale and orientation, this information is denoted IA because it is
based on the appearance of the character image. We then associate character classes
with these filtered images by a linear energy

UA
i

(
yi,x; θA

)
= θ

A (yi) · Fi (x) , (4.1)

where Fi (x) ≡ di. The same appearance parameters are used for every character, so
there is no dependence of θ

A on index i.
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Figure 4.2. Factor graphs for inferring characters y from a given image x. The
solid (black) factors capture relationships between the image and character identity,
IA. Hatched (blue) factors between neighboring y capture language information in-
cluding bigrams, IB, and letter case, IC . Shaded (red) factors among y account
for similarities between characters in x for jointly labeling the string, IS. Cross-
hatched (magenta) factors can constrain portions of y to be drawn from a lexicon,
IW , while the tiled (cyan) factors capture the bias for lexicon words, IL. Top: Model

corresponding to p
(
y | x, θ̂, I, IA, IB, IC , IS

)
. Bottom: Model corresponding to

p
(
y | x, θ̂, I, IA, IB, IC , IW , IL

)
.
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Figure 4.3. Gabor filter responses on a character input image for the appearance
model. Top: An example training character with (left to right) real, imaginary, and
complex modulus filter responses for one orientation and scale. Bottom: Downsized
filter responses for all orientations and scales.
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4.2.2 Language Model

Properties of the language are strong cues for recognizing characters in previously
unseen fonts and under adverse conditions. The many previous works reviewed in
Section 1.3.1 have made use of it in various ways. We add simple linguistic properties
to the model in the form of two information sources: character bigrams and letter
case.

It is well known that the English lexicon employs certain character juxtapositions
more often than others. N -grams are a widely-used general feature for character
and handwriting recognition [14]. Our model uses this information IB via the linear
features

UB
ij

(
yi, yj; θ

B
)

= θ
B (yi, yj) , (4.2)

where i and j are ordered, adjacent characters within a word. In this model, we do
not distinguish letter case in the bigrams, so the weights in θ

B are tied across case
(i.e., θ

B (R, A) = θ
B (r, A) = θ

B (R, a) = θ
B (r, a)).

Prior knowledge of letter case with respect to words also proves important for
accurate recognition in English. In some fonts, potentially confusable characters may
have different cases (e.g., l and I, lowercase ell and uppercase eye). Since we do
not binarize the images, there is no direct method for measuring the relative size
of neighboring characters. We can improve recognition accuracy in context because
English rarely switches case in the middle of the word. Additionally, uppercase to
lowercase transitions are common at the beginning of words, but the reverse is not.
Note that digit characters have no case. This information IC is incorporated with the
feature weights

UC
ij

(
yi, yj; θ

C
)

=






θC,s yi, yj same case
θC,d yi, yj different case

0 otherwise,
(4.3)

when i and j are adjacent characters within a word and

UC
ij

(
yi, yj; θ

C
)

=

{
θC,u yi lowercase, yj uppercase

0 otherwise,
(4.4)

when i and j are the first and second characters of a word, respectively. Thus ,for
this letter case model, UC , we have the parameters θ

C =
[

θC,s θC,d θC,u
]
. Note

that the functions (4.3) and (4.4) still have the same general linear form as presented
in Section 2.2, but we present their more compact, tied form here.

4.2.3 Similarity Model

An important, underused source of information for recognition is the similarity
among the character images themselves—two character images that look the same
should rarely be given different labels. Toward this end, we need a comparison func-
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tion for images. We have found the vector angle between the concatenated real and
imaginary parts

f ′i =
[
ℜ (fi) ℑ (fi)

]

of filtered image vectors fi and fj for each character to be a robust indicator of image
discrepancies. We use

κij = 1 − f ′i · f ′j√
f ′i · f ′i

√
f ′j · f ′j

(4.5)

as a distance measure, which has range [0, 2]. If θ is the angle between the two vectors
f ′i and f ′j , the distance is related by θ = 1− arccos κ. When the distance is small the
characters are very similar, but when large they are dissimilar. Using the information
IS, we add the features

US
ij

(
yi, yj,x; θS

)
= δ (yi, yj) θ

S · Fij (x) , (4.6)

where δ (·, ·) is the Kronecker delta, and

Fij (x) =
[
− ln (κij) ln (2 − κij) 1

]
(4.7)

is a vector of basis functions that transform the distance κij between two character
images in x. The first two functions each have a distance range boundary as an
asymptote, and the last is a bias term. Thus, the first weight in the parameter vector
θ

S establishes a high compatibility reward for small distances, the second weight a
low compatibility penalty for larger distances, and the bias helps (in conjunction with
the first two) establish the crossover point. This is qualitatively similar to the inverse
of the sigmoid function with a scaled range, except that it is no longer symmetric
about the zero-crossing; see Figure 4.4. Once again, we note that the function (4.6)
has the general linear form given in Section 2.1.2, but we present its more compact
version here.

4.2.4 Lexicon Model

A lexicon is a useful source of high level information that can be applied to recog-
nition, and several prior systems employing it were reviewed in Section 1.3.1. We
propose another set of factors for our model that incorporates lexicon information.
First, we add a set of auxiliary unknowns that will represent lexical decisions. We
then add two new compatibility functions involving these and the other character un-
knowns. The first compatibility is simply a bias determining how likely it is a priori
for a given string to be from the lexicon. The second is a simple binary function that
connects all the constituent characters of a word with the lexical indicator. Although
this compatibility function is simple in appearance, a näıve implementation would
present a great deal of difficulty for common message-based approximate inference
methods such as loopy belief propagation. Fortunately, one simple trick makes the
implementation much easier, although it is still linear in the lexicon size. This can
be problematic when the lexicon is large, therefore we introduce the use of a sparse
message passing scheme for a lexical model that avoids most of the overhead required
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Figure 4.4. Similarity basis functions and the learned compatibility for the dis-
tance between different images of the same character; the coefficients are θ

S =[
0.9728 9.3191 −6.9280

]
. The dotted line in the right-hand figure shows the

crossover from reward to penalty, which occurs at a vector angle of about 37◦.

with no loss of accuracy on our data. In the remainder of this section, we intro-
duce the new lexical factors, followed by the specialized message passing scheme for
inference in the resulting model.

4.2.4.1 Lexicon Factors

We add the auxiliary unknowns w to our model, so that each wk ∈ {0, 1} repre-
sents whether the kth string to be recognized (as a part of y) as a word unit is drawn
from a lexicon L, a subset of of all possible strings from the alphabet Y . Let C be the
set of unknowns relating to a single word unit; such a set will contain the indices of
some letters y and one entry from w. The compatibility function relating the lexicon,
the predicted string, and the lexical decision, is a simple “binary” function

UW
C (yC , wC) =

{
−∞ wC = 1 ∧ yC 6∈ L

0 otherwise,
(4.8)

where we have written wC to indicate the value of the sole index of w present in
C. Thus, the corresponding factor, or exponentiated compatibility (4.8), is zero only
when wC indicates the string is a word but yC is not found in the lexicon. This
tautological compatibility function simply represents the proposition

wC = 1 ⇒ yC ∈ L

and would not be much use were it not for the fact the value of wC is unknown. The
indicator wC could help control other aspects of interpretation in the model. For
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instance, we might want to disable the influence of the local language compatibilities
when wC = 1; no matter how unlikely the word yukky is1, it is in the lexicon and
should not be discounted for its unusual bigrams during recognition.

The other new compatibility is a simple term biasing the preference for strings to
be drawn from the lexicon

UL
k

(
wk; θ

L
)

= (1 − wk) θL. (4.9)

This function also has the general linear form as given in Section 2.1.2, but we present
here its interpretable compact form, so that the single parameter θL can be thought
of as penalty for non-lexicon predictions.

Introducing these two new classes of compatibilities UW and UL will be reflected
by conditioning on information IW and IL. The factor graph for a model including
these factors appears in the bottom of Figure 4.2 on page 55. In the next section, we
describe more about how the two new compatibility functions (4.8) and (4.9) affect
inference in the model and introduce the application of a sparse inference technique
for making predictions using loopy belief propagation.

4.2.4.2 Sparse Belief Propagation

Inference, even approximate inference, in this model might be computationally
taxing in general. The sum-product algorithm, briefly reviewed in Section 2.3.2, in-
volves computing local marginals of factors, which is generally much easier than the
more global marginalization desired. However, marginalizing the lexicon word com-
patibilities UW grows combinatorially with the length of the word. This is true in
general, as the complexity of the message passing equations depends roughly combi-
natorially on the size of the compatibility function’s index set C, or rather in the size
of the resulting domain YC : O (|YC |). For instance, with a six letter word in our 62
character alphabet, each iteration of message passing would require a sum over 626

or nearly 57 billion strings.
Fortunately, the on/off “gating” behavior of the function UW

C allows us to take
advantage of its special form. The effect is that when wC = 1, the “product” in
the sum-product equation only needs to be summed over words in the lexicon. For
the case when wC = 0, it is summed over all strings, but the sums over constituent
characters become independent. This means we can make the calculation a much
more efficient product of sums. Thus, the special form (4.8) makes the inference
calculation linear in the size of the lexicon or the character alphabet, rather than
exponential in word size. The computational expense of a six letter word drops from
billions of possible strings to just a few thousand lexicon words.

As a concrete example, let us assume that the set index C corresponds to the nodes
of the second, three-letter word in the bottom factor graph of Figure 4.2 on page 55.
For clarity, we will use numerical indices for the character nodes y and alphabetical
indices for the word nodes w. In this example, wC is the generic reference to the word

1Under a bigram model trained on a corpus of English text, the word is actually the least likely
in a large lexicon.
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node for the factor C, while wB is the particular node. The general form of a factor-to-
node message (cf. Eq. 2.34 on page 29) is a product of the factor times the messages
to that factor from all its arguments except the message recipient. This product is
then summed over all those arguments leaving a function whose value is dependent
on the recipient node. For the lexicon factor we are calling C, the specialized form of
the message from C to the character y6 has the form

mC→6 (y6) =
∑

yC\{6} ∈ YC\{6},
wB ∈ {0, 1}

[
exp UW

C (yC , wB) ∗

m7→C (y7)m8→C (y8) mB→C (wB)
]

(4.10)

=
∑

{yC∈L:y6}
m7→C (y7) m8→C (y8)mB→C (wB = 1) +

∑

y7∈Y,y8∈Y

m7→C (y7) m8→C (y8) mB→C (wB = 0) (4.11)

=
∑

{yC∈L:y6}
m7→C (y7) m8→C (y8)mB→C (wB = 1) +

mB→C (wB = 0) (4.12)

We first separate the sums for the two values of wB. Because the factor exp UW
C (yC , wC)

is zero whenever the argument yC is not in the lexicon but wC = 1, the sum can be
restricted from YC\{6} to the portion of the lexicon that agrees with the argument
value y6 when wB = 1. Furthermore, when wB = 0, the factor is always one. In
the last line, we may push the sums over each character value y7 and y8 in against
the corresponding messages. Because these messages are normalized to sum to one
in practice, these terms are dropped, leaving us with a relatively simple sum over a
subset of lexicon terms. To calculate the message to character 6 for all values of y6

involves a sum over all lexicon words of the appropriate length. Messages to other
character nodes will have the same form, with the number of node-to-factor messages
in the product depending on the length of the word.

The message to the word node wB undergoes a similar transformation:

mC→B (wB) =
∑

yC∈YC

exp UW
C (yC , wB) m6→C (y6)m7→C (y7) mB→C (y8) (4.13)

=

{ ∑
yC∈L m6→C (y6) m7→C (y7) m8→C (y8) wB = 1

1 wB = 0
. (4.14)

As before, the term for wB = 1 only needs to be summed over lexicon words of the
appropriate length. When wB = 0 , sums over individual characters are again pushed
against their messages and simplify to their normalized sum of one, leaving only the
product of unity.

Although these sums have an upper bound complexity linear in the size of the
lexicon, it still presents a computational drag in practice. The top-down information
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is very important for accurate recognition, so we use a bottom-up scheme to speed
the recognition process. Pal et al. [89] propose a probabilistically motivated sparse
inference method that simplifies the message passing calculations. The central idea
is to reduce the number of summands in the factor-to-node messages mC→i (yi), like
(4.12) and (4.14), by creating zeros in the node-to-factor messages mi→C (yi).

At each iteration in the loopy version of belief propagation, a belief state, or lo-
cal approximate marginal probability, at every node is represented by the normalized
product of messages to that node from its adjacent factors (cf. Eq. (2.35) on page 29).
Each factor combines information from its adjacent node arguments and returns up-
dates to them. As described above, the update for the lexicon factor involves a sum
over every word in the lexicon (of the appropriate length), even those words containing
characters with low probabilities. We may therefore desire to eliminate these unlikely
lexicon words from consideration during the belief update stage. The well-motivated
approach given by Pal et al. is to revise the local beliefs such that the largest number
of the lowest probability states have zero probability, subject to a constraint on the
divergence of the sparse belief from the original. In other words, consider the fewest
number of possibilities while sticking close to your original beliefs. Employing this
strategy, we expect to greatly reduce the amount of lexicon scans for a given query.

If bi represents the marginal belief for node i in the graph, our goal is to compress
this distribution to b′i such that it has the maximum number of zero entries, subject
to a divergence constraint:

maximize
∑

yi∈Yi
δ (b′i (yi) , 0)

subject to KL (b′i ‖ bi) ≤ ǫ,
(4.15)

where

KL (b′i ‖ bi) =
∑

yi∈Yi

b′i (yi) log
b′i (yi)

bi (yi)
(4.16)

is the Kullback-Liebler divergence between the original and compressed beliefs. This
can easily be accomplished for each node in time O (|Yi| log |Yi|) by sorting the beliefs
and calculating the log cumulant. Once the sparse belief b′i is calculated, the messages
to the factors mi→C (cf. Eq. (2.33) on page 28) are compressed to respect the sparsity
of b′i and re-normalized.

These sparse node-to-factor messages are then subsequently used to calculate the
reverse factor-to-node messages. The practical effect of sparse belief propagation is
that certain characters are eliminated from consideration. For instance, the visual
and contextual evidence for y7 to be a t may be so low that it can be assigned a zero
belief without greatly changing the current local marginal. When this happens, we
may eliminate summands for any word whose second character is t in the messages
(4.12) and (4.14). Taken together, pruning highly unlikely characters reduces the
lexicon under consideration from tens of thousands of words to just a few, dramatically
accelerating message passing-based inference.

We should note that depending on the order of operations, characters may not be
strictly eliminated from possibility. If outgoing messages to factors are made sparse in
agreement with the compressed disribution b′i, this only means that terms are dropped
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Figure 4.5. Examples of sign evaluation data. Left: Regular font similar to those
often found in documents. Center: Unusual or custom regular font (all repeated
characters are the same). Right: Custom irregular font where repeated characters
have a different appearance.

from the summation used to calculate messages to other nodes. The return message
may not be sparse at all, and in general it is not. Thus, using sparse methods to
“eliminate” characters means only that we lose the influence of the dropped character
hypotheses upon their logically dependent nodes. The final belief at a node (from
which predictions are made) is calculated using the most recent incoming messages
from the factors, which are not generally sparse. Therefore we have not necessarily
committed to a mistaken elimination of correct character hypotheses.

4.3 Experiments

In this section we present experimental validation of our model on sign images
containing novel fonts and non-lexicon words. The alphabet of characters we will
recognize, Y , consists of 26 lowercase, 26 uppercase, and the 10 digit characters (62
total).

First we describe the data used in our experiments for both training and testing,
and then the procedures used to train and evaluate the models. The section concludes
with the experimental results and a subsequent analysis and discussion.

4.3.1 Experimental Data

Because we have such a rich model involving many information sources, there are
many corresponding data sets for training, including character images, English text
corpora, and a lexicon. We describe these after detailing the nature of the primary
evaluation data.

Sign Evaluation Data Our evaluation data comes from pictures of signs captured
around downtown Amherst, MA in September and October 2002. There are 95 text
regions (areas with the same font) totaling 215 words with 1,209 characters. Many
signs have regular fonts (that is, characters appear the same in all instances) that
are straightforward, such as basic sans serif, and should be easily recognized. Other
signs contain regular fonts that are custom or rarely seen in the course of typical
document recognition. Finally, there are a few signs with custom irregular fonts
that pose the greatest challenge to the premise that similarity information is useful.
Examples of each of these three categories are shown in Figure . The signs are imaged
without extreme perspective distortion—they are roughly fronto-parallel. Following
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Figure 4.6. Example fonts from synthetic training data.

the assumptions laid out in Section 4.2, we have annotated our evaluation data with
the approximate bounding boxes for the characters.

Synthetic Font Training Data We generated images of each character in several
commercially available fonts using GIMP.2 Each image is 128×128 pixels with a font
height of 100 pixels (an x-height of roughly 50 pixels). No anti-aliasing was used in
the image synthesis and the bounding box of the character is centered in the window.
Examples are shown in Figure 4.6.

Text Corpora A corpus of English text was acquired from Project Gutenberg3—82
books including novels, non-fiction, and reference for a total of more than 11 million
words and 49 million characters (from our 62 character alphabet).

2GNU Image Manipulation Program http://www.gimp.org.
3http://www.gutenberg.org.
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Lexicon The lexicon we use is derived from SCOWL4 and contains 187,000 words
including proper names, abbreviations, and contractions. Because our current model
does not account for word frequency in its lexical bias, we only use those words in
the list up to the 70th percentile of frequency for our lexicon.

4.3.2 Experimental Procedure

In this section we describe the procedure used for training and evaluating our
model. We first outline the nature of the overall model parameter training followed
by details of training for each component of the model. The section concludes with a
brief description of how the model is applied to the actual image data for evaluation.

4.3.2.1 Model Training

The model parameters θ =
[

θ
A

θ
B

θ
C

θ
S θL

]
are learned from the data

outlined above. Typical parameter estimation procedures in such discriminative joint
models requires labeled data that involves all the information at once. In other words,
training data should be like the testing data. For example, training character images
must be used within a stream of actual English text to simultaneously learn parame-
ters for the appearance discriminant UA and the bigram model UB . To eliminate this
requirement, we approximate the model likelihood using the parameter decoupling
scheme described in Section 2.2.1.1. The parameters θ

A, θ
B, θ

C , and θ
S are each

learned independently in this fashion, while the lexicon bias parameter θL is chosen by
cross-validation. Next, we detail the training procedures for each of these parameter
sets.

Appearance Model The character image appearance model parameters θ
A are

trained on 200 fonts, and 800 fonts are used as a validation set. The value of hy-
perparameter α for the Laplacian prior (cf. Eq. (2.27) on page 26) that yields the
highest likelihood on the validation set is the one used for optimizing the posterior
for θ

A.
The filter outputs for the 128 × 128 training images are downsized by a factor

of four to 32 × 32 to get di. Although some information from the highest frequency
filters is lost, this reduces the dimensionality of θ

A by a factor of 16.
The evaluation data is far from having perfect contrast (a nearly 0/1 binary im-

age). As a very simple alternative to a more elaborate contrast normalization scheme,
we scale the training images so that the contrast (absolute difference between back-
ground and character intensity) is 0.3. The contrast of the characters in the evaluation
data is shown in Figure 4.7.

Language Model To avoid the need for performing inference on large chains of
text, we use the piecewise training method described in Section 2.2.1.2 to approximate
the (already decoupled) likelihood. This is especially advantageous for the bigram and

4http://wordlist.sourceforge.net.
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Figure 4.7. Histogram of evaluation data character contrast. The vertical red line
indicates the contrast given to training images.

case switch models (4.2), (4.3), and (4.4), which do not depend on an observed image.
Thus, training instances may be collapsed into unique cases and weighted by their
frequency. For example, the corpus of 49 million characters contains nearly 780,000
occurrences of the bigram th. Rather than doing inference on the entire chain of text
with an exact method, we need only do inference once in a two-node chain for th and
count it 780,000 times.

The books were split into two sets of roughly equal size, one for training and one
for validation. The (case-insensitive) bigram counts were taken for each set, and the
value of the hyperparameter α for the Laplacian prior (cf. Eq. (2.27) on page 26)
that yields the highest likelihood on the validation set is the one used for optimizing
the posteriors for θ

B on the entire corpus.
In practice, we found that enabling the language model, regardless of the value

of the auxiliary word indicators w improved accuracy over disabling it whenever the
corresponding wk = 1. Our results reflect this aspect of the model.

A uniform prior was used for the case model parameters θ
C .

Similarity Model Because the function US is zero whenever its two character
arguments have different labels and otherwise has a functional value parameterized
by θ

S (displayed in Figure 4.4 on page 59), we may equivalently learn the parameters
for a function US that takes only a single argument y with a label of Same or Different.
The piecewise training approximation described in Section 2.2.1.2 follows naturally
because these character pairs are completely decoupled from any related stream of
text.

To learn the similarity parameters θ
S we generated pairs of the same character

(in the same font) and pairs of different characters (also in the same font) with the
following procedure. First, we select a font and a character uniformly at random. To
produce a similar character, we generate a random linear transformation
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Figure 4.8. Comparison of training and evaluation data for similarity model. Left:
Histogram of query lengths (number of characters in a given instance of text). The
red curve is the (scaled) geometric distribution used for sampling excerpts from the
training corpus. Right: Histogram of query same/different character ratio. The red
line is the overall ratio acquired from the corpus sample.

T =

[
cos θ sin θ

− sin θ cos θ

] [
σx ρx

ρy σy

]
(4.17)

with rotation θ ∼ N (0, 1◦), scale factors σx, σy ∼ N (1, 0.01), and skew factors
ρx, ρy ∼ N (0, 0.005). This transformation is then applied to the original image.
To produce a dissimilar pair, a different character is chosen uniformly at random.
We choose a different character from the same font because this reflects our prob-
lem, having assumed the input is from a single font. Furthermore, these are likely to
be more similar than different characters from different fonts, allowing a better and
more appropriate threshold to be learned. Additive Gaussian noise ǫ ∼ N (0, 0.01) is
added to the original and transformed images prior to Gabor filtering. Unlike for the
appearance model, the full-size (128 × 128) filter outputs are used to calculate the
distance κij between images. The finer details are useful for these comparisons, and
the dimensionality is not an issue since US only has three parameters.

For optimal predictive discrimination, the ratio of same to different pairs in the
training data should be the ratio we expect in testing data. Toward this end, we
sample small windows of text from our corpus. The window length is sampled from
a geometric distribution with a mean of 10 characters and length at least 3; these
parameters are chosen based on our prior expectation of sign contents. In 10,000
samples, the same/different ratio is consistently about 0.057. This ratio controls the
relative number of similar and dissimilar pairs we generated (100,000 total). Figure
4.8 compares these model parameters and sampling methods with the evaluation data.

A uniform prior was used for the similarity model parameters θ
S.
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Lexicon Model

Parameter Learning We found acceptable performance for models conditioned
on IA, IB, IC , IS with corresponding parameters found in the decoupled fashion as
detailed above. One way of doing this for the bias parameter θL is to use our English
corpus, using each word from the text as a training instance with w = 1 if it is in our
lexicon L and w = 0 otherwise. We found that decoupling the learning of θL in this
way does not yield a strong enough lexical bias to improve results as originally hoped,
so we turn to a cross-validation strategy to “re-couple” the parameter learning.

To add IL to the model, we keep all other parameters fixed at their values learned
from decoupling. The 95 regions in the evaluation sign data is randomly split into
ten subsets. In a ten-fold cross-validation procedure, we iteratively held out one set
for testing. Several values of θL are used, and the one with the highest word accuracy
on the nine training sets is then applied to the test set for evaluation.

We can also force the model to always predict words from the lexicon by adjusting
the bias θL to −∞. We will use IL

−∞ to indicate such a closed-vocabulary assumption.

Sparse Belief Propagation Sparse message passing as proposed by Pal et
al. [89] was intended for belief propagation in a chain-structured graph where a
well-defined forward-backward schedule for message passing achieves exact inference.
While the graph based on IA, IB, IC is a chain, adding the lexical information IW

makes this graph not only not chain-structured, but cyclic. Thus, the results of belief
propagation will not be exact in general. It is only IW that is truly problematic from a
computational standpoint. The other messages—of which there are only a few—only
require complexity of at most O (Y 2), which is substantially less than the messages
from the lexical factor. For this reason, we run belief propagation in a phased sched-
ule, only sending any lexical factor to node messages after the others have converged.
Once these messages have converged, we have the best possible local marginals on the
available information, excepting IW and IL. We then use these beliefs for computing
the sparsity of the character states y. This sparsity is calculated once, then the lexical
information IW , IL is introduced, and the same sparsity structure is maintained. Be-
lief propagation then continues until the termination criterion is reached (convergence
or an iteration limit).

This phased processing has two advantages. First, because messages are passed
within a limited portion of the model until convergence, the beliefs used to calculate
sparsity should be more reliable since the available information has flowed throughout
the graph. This stands in contrast with the alternative of doing state pruning with
the initial beliefs, which will only be based on factors immediately adjacent to the
nodes. Longer distance dependencies certainly exist in these types of models, and
these could have an effect on the sparsity and correctness of the approximate beliefs.
The second and arguably more important advantage is that it avoids the need to
make a complete lexical scan required in the messages from the lexical factor. Since
the messages are initialized to uniform, the lexical factor merely ends up contributing
positional unigrams to the initial belief. This is not worth the cost of the lexical scan
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and could be modeled directly if we wished. Returning to our initial point, we prefer
to use the best available information before incorporating the lexicon.

We use ǫ = 10−7 as the divergence bound for sparse belief propagation. This
corresponds to keeping nearly all of the probability mass (e−ǫ) for each character.
The runtime was sensitive to this, since it controls the amount of pruning, but we
found accuracy was not.

4.3.2.2 Model Application

Here we add a few additional details of how the evaluation images are processed for
the model. The height of the input characters in the evaluation data is normalized
so that the font size is roughly that of the appearance training data. Only filter
responses from within the annotated bounding box of each character are used when
calculating the energies for appearance UA and similarity US; indices in fi that are
outside the bounding box are zeroed out. Note that Gabor filters are applied to the
actual grayscale image; no binarization is performed.

4.3.3 Experimental Results

Here we describe the performance of several variants of our model on the evaluation
data, as well as alternatives from prior approaches to challenging character recognition
problems. First, we demonstrate the impact of using similarity information in a
unified model for recognition. Then we investigate how incorporating a lexicon affects
results.

4.3.3.1 Unified Similarity

Prior work using similarity (reviewed in Section 1.3.3.2) incorporated this infor-
mation in a processing stage separate from that using character appearance. Here we
will compare our unified model to the approach of Breuel [15, 16], where characters
are first clustered using the degree of similarity as a distance metric. Following this

approach, to cluster letters, we maximize p
(
y | x,θ̂, I, IS

)
for y via simulated anneal-

ing, initialized at the prediction derived from IA (the strategy taken by Breuel [15]).
The identity of each cluster is then chosen by using the classification of each charac-
ter derived from other models (sans IS) as a vote. Ties are broken by choosing the
label whose members have the lowest average entropy for their posterior marginal, a
strategy that slightly outperforms random tie breaking.

Table 4.1 gives the results of the unified model using different combinations of
appearance information IA, language information IB, IC , and similarity information
IS. Table 4.2 shows the results when the similarity information is used first to clus-
ter the characters, and the other information (used separately) is then used to vote
on character identities. Character accuracy is the percentage of characters correctly
identified (including case). To evaluate the ability of our model to recognize differ-
ent instances of the same character in the same font, for intra-sign and intra-font
characters we measure:
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Table 4.1. Recognition results (percentages) of the unified model with varying
amounts of information. Overall character accuracy as well as the false negative
(FNR), false positive (FPR), and hit rates (HR) for pairs (see text) are given.

Information Character Accuracy FNR FPR HR
IA 84.04 11.42 0.51 91.07

IA, IS 84.04 11.42 0.51 91.07
IA, IB 87.92 9.14 0.53 93.81
IA, IC 87.92 8.79 0.87 94.03

IA, IB, IC 91.65 6.85 0.66 98.68
IA, IB, IC , IS 93.22 5.45 0.14 99.26

Table 4.2. Recognition results (percentages) of clustering followed by recognition
and voting. Overall character accuracy as well as the false negative (FNR), false
positive (FPR), and hit rate (HR) for pairs (see text) are given.

Information Accuracy FNR FPR HR
IS - 22.67 0.25 -

IS → IA 83.54 7.03 0.69 88.28
IS → IA, IB 87.92 4.39 0.80 91.73
IS → IA, IC 87.76 5.80 1.02 92.72

IS → IA, IB, IC 91.40 3.69 0.88 97.26

False negative rate: Percentage of character pairs that are the same but are given
different labels.

False positive rate: Percentage of character pairs that are different but are given
the same label.

Hit rate: Percentage of character pairs that are the same, given the same label, and
correct (correctly labeled true positives).

Figure 4.9 contains examples of signs correctly read, as well as examples from the
evaluation set that are more difficult.

Another interesting comparison is provided by the likelihood ratio of the data
under models with different amounts of information. Let D =

{
y(k),x(k)

}
k

represent
our evaluation label and image data. The geometric mean of the likelihood ratio
between the language-informed and appearance-only models is




N∏

k=1

p
(
y(k) | x(k), θ̂, I, IA, IB, IC

)

p
(
y(k) | x(k), θ̂, I, IA

)





1
N

≈ 85.33. (4.18)

Adding the similarity information to the model also yields a modest increase in belief
about the correct labels for the data:
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Figure 4.9. Examples from the sign evaluation data. Left: Signs read correctly with
IA, IB, IC , IS. Right: Challenging signs that have unique fonts, are hand-painted,
or contain three-dimensional effects, real and virtual.




N∏

k=1

p
(
y(k) | x(k), θ̂, I, IA, IB, IC, IS

)

p
(
y(k) | x(k), θ̂, I, IA, IB, IC

)




1
N

≈ 1.02. (4.19)

4.3.3.2 Lexicon-Based Model

In addition to the unified similarity model, we also test the effect of the integrated
lexicon and the impact of using sparse belief propagation. Table 4.3 compares the
character and word accuracy for our model with varying amounts of information. For
comparison with some methods reviewed in Sections 1.3.1 and 1.3.2, the output of
our best lexicon-free model is passed through the spell-checker Aspell, keeping the top
suggestion. Figure 4.10 shows results on example data of varying difficulty, including
where corrections were made and errors introduced.

We show in Figure 4.11 the histogram of how many characters remain possible
after belief compression with sparse belief propagation for several of the models.
The elimination of many characters from consideration excludes certain words in the
lexicon with characters in particular positions. The resulting reductions in length-
appropriate lexicon words is shown in the histograms of Figure 4.12. Different word
lengths have differing numbers of possible words in the lexicon, so we give length-
specific lexicon size-normalized values. However, to illustrate the raw impact we also
give the median absolute size of the resulting lexicon.
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Table 4.3. Word and character accuracy with various forms of the model.

Information Character Accuracy Word Accuracy

IA 84.04 46.05
IA, IB, IC 91.65 75.35

IA, IB, IC , IS 93.22 78.60
IA, IL, IW 93.63 72.56

IA, IL
−∞, IW 91.56 68.84

IA, IB, IC , IL, IW 93.88 85.58

IA, IB, IC , IS, IL, IW 94.46 85.58

IA, IB, IC , IL
−∞, IW 92.39 81.40

IA → Aspell 73.78 53.49
IA, IB, IC → Aspell 89.50 77.21

IA, IB, IC , IS → Aspell 90.98 79.07

4.3.4 Discussion

4.3.4.1 Similarity Model

Figure 4.9 on the preceding page contains examples of signs correctly read without
the lexicon, showing that the features are robust to various fonts and background
textures (e.g., wood and brick). Although the number of characters per sign is small
compared to OCR applications, adding similarity information undoubtedly improves
character recognition accuracy, reducing overall error by nearly 20% (Table 4.1). Not
surprisingly, most of this improvement comes from greatly reducing the cases when
different characters are given the same label (pair false positives).

Perhaps surprisingly, adding similarity information IS to the simple image infor-
mation IA does not alter the results. This is probably because test images have rela-
tively little noise and are mostly difficult due to font novelty and non-fronto-parallel
orientations. Therefore, it is expected that the same characters, though novel, would
often be given the same label in different locations, due to their logical independence
solely with information IA. However, when other sources of information are intro-
duced to help resolve ambiguity, the similarity information does make a difference
because the bigram and case information are based on local context. These can push
the beliefs about characters in different directions, even though they tend to look the
same, because their contexts are different. Adding the similarity information on top
of these other sources ensures that the local context does not introduce a contradic-
tory bias, as was demonstrated in Figure 4.1 on page 52. Adding bigram information
pushes the second e to an a because preference for the ea bigram outweighs both
ee and the character/image energy. Similarly, adding case information pushes the
l from being recognized as the upper case I to lower case t; due to kerning in this
italic font, some of the F overlaps in the l’s bounding box, leaving a little crossbar
indicative of a t. Finally, adding the similarity information corrects the l since it is
very different from the final t, and corrects the es since they are very similar.
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Model
Correct Free checking 31 BOLTWOOD DELANOS

No Lexicon Free crecking 31 BOLTWOOD RELAmo3

Lexicon Free checking 31 BOLTWOOD RELAmo3

Forced Lexicon Free creaking SI BENTWOOD DELANOS

Aspell Frag recurred 31 BELLWOOD Reclaim

Model
Correct HOOK UPS MYSTERY TRAIN REVOLVE

No Lexicon HTOR UP5 MYOUGRP ndaIN FERTEVE

Lexicon HOOK UPS MNLUGRP RMRIN REREERE

Forced Lexicon HOOK UPS LATHERY ANTIN RESTORE

Aspell THOR UPI MARGERY AARON RETRIER

Figure 4.10. Example recognition results on difficult data. Correct words indicated
in bold. Model examples are IA, IB, IC , IS (No Lexicon ), IA, IB, IC , IS, IL, IW (Lex-
icon), IA, IB, IC , IS, IL

−∞, IW (Forced Lexicon) and IA, IB, IC , IS → Aspell (Aspell).

All of the differences in accuracy for the unified model (Table 4.1) are statistically
significant.5 In particular, adding the similarity information IS to IA, IB, IC reduces
character classification error by 19%. While the reduction of false negatives is not
significant with the addition of IS, the false positives are cut by 79%. When the
unified model is compared to the pipelined clustering approach, the differences be-
tween IA, IB, IC , IS and IS → IA, IB, IC are significant for character accuracy, false
negative rate, and false positive rate.

As expected, adding more prior information to the model boosts the likelihood of
the data. The model using appearance alone is relatively weak, since a probability has
an upper bound of one, yet the ratio in (4.18) is quite large. In addition to improving
the prediction accuracy, adding the similarity information yields an increase in the
degree of belief for the correct labels, as shown by (4.19). Although the increase is
slight on average, more than ten percent of the signs in our evaluation data exhibit an
increase of at least one order of magnitude. This could be important when confidence
in the model’s prediction helps to determine how to handle a query.

The results of clustering the letters prior to recognition appear worse than do-
ing recognition outright with no similarity information. However, unifying all the
information available—including similarity— does yield better results than a distinct
clustering step. It is interesting that clustering yields fewer false negatives than the
unified approach. This is most likely because clusters are not forced to have different
labels at the secondary assignment stage. Thus, instances of the same character as-
signed to different clusters are not forced to have different labels (up to the fact that

5In all cases, significance is assessed by a paired, two-sided sign test on the accuracy per query.
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Figure 4.11. Histograms of character state space cardinality after belief compression.
Left: Appearance only model IA, IL, IW . Center: Appearance and language model
IA, IB, IC , IL, IW . Right: Full model with appearance, language, and similarity
IA, IB, IC , IS, IL, IW .
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Figure 4.12. Histograms of the percentage of length-appropriate lexicon words con-
sidered after belief compression. Left: Appearance only model IA, IL, IW . Center:
Appearance and language model IA, IB, IC , IL, IW . Right: Full model with appear-
ance, language, and similarity IA, IB, IC, IS, IL, IW .

there are only as many clusters as characters in our alphabet Y ). Indeed, if this were
the case, the false negative rate would be intolerably high. Conversely, the clustering
pre-processing step does commit unrecoverable errors by pairing characters that are
not the same; subsequent information cannot reduce the false positive rate. This is
especially critical because the probability of two characters being the same a priori
is much smaller than their being different, thus the false positive rate has a greater
impact on total errors than the false negative rate.

Some signs in our data set present tremendous difficulty and challenge the as-
sumption that characters of the same “font” appear similar. Some of these are due to
rendered warping effects, custom fonts, or inconsistent shadow effects (see Figure 4.9
on page 71). Other signs just have unique fonts that are very different from those in
the training set.
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4.3.4.2 Lexicon Model

Here we discuss the results of adding the lexicon, some of which are shown in
Figure 4.10 on page 73. 31 and BOLTWOOD are not in the lexicon, so errors arise
with the forced lexicon and Aspell models. DELANOS is in the lexicon, but the image
evidence overpowers the bias in this case; forced to be a lexicon word, it is correctly
interpreted. The last two images exemplify some of the more difficult text in our data
set.

Incorporating the lexicon factor boosts the character accuracy, but adding the
language model (i.e., bigrams) after the lexicon seems to have little impact. However,
the word accuracy reveals a 41.5% error reduction with the inclusion of the lexicon.
Results do improve over an appearance-only model when words are forced to be from
the lexicon, but some proper nouns and numbers in the data are not lexicon words
and thus are misinterpreted. Using Aspell fixes some simple errors, but most errors
are more complex. Ignoring the character image for poorly recognized words tends
to reduce overall character accuracy (since poor suggestions are made). We also
experimented with trigrams and word frequencies (i.e., using a word-specific value for
UW ) , but found no improvement in word accuracy on our evaluation data.

Sparse belief propagation speeds the lexicon integration by eliminating characters
from consideration after belief compression (Figure 4.11). This results in a 99%
reduction of candidate lexicon words overall. We must consider different lexicon words
for strings of different lengths. The median elimination of candidate words for each
string was 99.97% (Figure 4.12), or just 6 remaining candidates when not normalized
for the differing sizes of the original candidate lists. Adding language information
makes character beliefs more certain, allowing more characters and lexicon words to
be pruned.

4.4 Contributions

We have laid out a general framework for recognition that is probabilistically well-
motivated and can accept long range information in a unified fashion. The conceptual
advantage provided by discriminative Markov models easily allows one to imagine and
implement a relationship among the unknowns.

Our principle contributions are as follows. First, we have constructed a model
that allows unified processing of several important pieces of information (appearance,
language, similarity to other characters, and a lexicon). Second, we show how a
similarity function can be learned and integrated so that recognition is improved and
more consistent with small samples of novel fonts. Finally we have proposed a simple
construction that incorporates a lexicon into the model and facilitated its use by
applying principled sparse methods.

The basic discriminative framework for character recognition is not new, but it has
typically been relegated to individual characters. As outlined in Sections 1.3.1 and
1.3.2, language information is usually employed after recognition in a post-processing
clean-up. The models that have integrated language with recognition are generative,
which has two drawbacks. First, generative models are typically outperformed by
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their discriminative counterparts, since the latter merely focus on the recognition
task rather than the (often more complex and sometimes irrelevant) data modeling
task. Second, the independence assumptions of generative models often prohibit them
from using richer features of the data (observations). A recent exception is the work of
Jacobs et al. [52], whose discriminative model forces recognition output to be lexicon
words. In contrast, our lexicographic model allows a smooth trade-off between the
interpretation of a string as a known word, or some other string.

Section 1.3.3 highlights that classifier adaptation is a useful strategy for recog-
nition. However, when recognizing signs or scene text, there is a scant amount of
data, and it is generally insufficient for reliable use with the existing methods for
coping with novel typefaces. Our recognition strategy improves on two issues lack-
ing in previous approaches. First, by simultaneously incorporating character identity
and similarity information into a unified probabilistic model, we eliminate the need
for distinct clustering/recognition steps and the potential for unrecoverable errors.
Second, we treat similarity and dissimilarity as two sides of the same issue, which
prevents dissimilar characters from being given the same label.

It has long been known that the use of a lexicon can improve recognition accuracy.
Although some computational tricks exist, the size of a lexicon can often be prohibitive
for processing that integrates recognition, rather than using it as a post-processing
step. Our model provides a natural, practical testbed for the sparse inference methods
proposed by Pal et al. [89] for acyclic models. This has the advantage over the
traditional approach, which is to prune to one possibility for higher-level processing
or use a more ad hoc method to consider a reduced number of alternatives. By
eliminating characters from outgoing messages in a principled fashion, we are able to
drastically reduce the size of the lexicon that is used for a given query. This does not
necessarily mean that characters are eliminated from possibility, since the incoming
messages—from which beliefs are calculated—are not generally sparse. We have also
introduced lexical decision into a model that also includes other important linguistic
cues, such as bigrams.

4.5 Conclusions

In this chapter we have presented a model for character recognition that ties
together several important information sources. We have shown that the unified model
clearly improves results over pipelined processing. No doubt many opportunities exist
to add other information sources. A richer character recognition model could easily
be incorporated to boost accuracy, and higher order n-grams for both characters and
words could be added. All manner of language models could be considered, and there
is likely much mileage to be gained by integrating these with the recognition process,
rather than using them as post-processors.

This model still is geared only for recognition. In the next chapter, we present
a method for coupling the earlier detection stage—like that discussed in Chapter
3—and the recognition stage by jointly learning detection and recognition models.
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CHAPTER 5

UNIFYING DETECTION AND RECOGNITION

The task of reading involves sensing an image, locating the regions of text, and
identifying constituent characters. As outlined in the introduction, these processes are
generally treated in a hierarchical pipeline by first running a detector and then feeding
detections into an appropriate recognizer. In the previous chapter, we demonstrated
a flexible model for recognition. However, it assumed that the characters had already
been detected and only needed to be recognized. In Chapter 3 we saw an illiterate
detection model. It performed reasonably well but still suffered from false positives
where a small amount of interpretation might eliminate non-text regions from further
consideration. In this chapter, we begin to knit these processes more tightly by
considering them jointly.

Classifiers for object categorization and identification, such as face detectors and
face recognizers, are often trained separately and operated in a feed-forward fash-
ion. Selecting a small number of features for these tasks is important to prevent
over-fitting and reduce computation. However, when a system has such related or
sequential tasks, independently training and selecting features for these tasks may
not be optimal. Here we propose a framework for choosing features to be shared
between categorization (detection) and identification (recognition) tasks. The result
is a system that achieves better performance with a given number of features. We
demonstrate with experiments using text and car detection as categorization tasks,
and character and vehicle type recognition as identification tasks.

5.1 Overview

Many real-world problems must solve multiple classification tasks simultaneously
or sequentially. For example, a vision system may need to discriminate between cars,
people, text, and background as high-level categories, while also recognizing particular
cars, people, and letters. The categorization/detection task is to determine whether
an image region corresponds to an object from a class of interest (e.g., text) or not.
The identification/recognition task discriminates among members of that category
(e.g., if this is text, is the character a p or a q?). Often the categorization and iden-
tification tasks are treated in a sequential manner by first running a category-level
detector and then feeding detections into a category-specific recognizer. Moreover,
although the classifiers for the two tasks are related, they are usually trained inde-
pendently. This work seeks to knit these processes more tightly by considering them
jointly during model training.
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Figure 5.1. The categorization/detection task must only discriminate characters
(left) from background patches (right), while the identification/recognition task must
identify the centered character.

Constructing a model for a classification task involves many issues, including de-
ciding which features or observations are relevant to the decision. Two reasons for
limiting the number of features involved in classification include preventing over-
fitting and reducing the amount of computation needed to reach a decision. Models
with too many irrelevant features are prone to poor generalization since they are fit
to unnecessary constraints. Even when there is no over-fitting, if certain features are
redundant or unnecessary, the classification process can be expedited by eliminating
the need to compute them.

Feature selection may be important for both detection and recognition, the pri-
mary difference being the generality of the classification tasks. However, if these prob-
lems are treated in isolation, we may not achieve a feature selection that is optimal—in
computational or accuracy terms—for the joint detection-recognition problem .

While some features will undoubtedly be useful primarily for detecting object cat-
egories (e.g., text) and others will have the greatest utility for recognizing objects from
a particular category, there may be some features with utility for both tasks. When
this is the case, a method accounting for overlap in utility may have two advantages.
First, a feature useful for object identification may boost category detection rates for
the class by incorporating more object-specific information in the search. Second,
if such dual-use features have already been computed for the purposes of category
detection, they may subsequently be utilized for identification, effectively reducing
the amount of computation necessary to make a classification.

In this chapter, we propose a framework for jointly considering the general cate-
gorization and specific identification tasks when selecting features and compare it to
two other approaches. The first attempts only to predict identities and has no explicit
representation of categories. The second approach has a category model and several
category-specific recognizers, all of which are trained independently. Our approach is
to jointly learn and select features for the category and identity models. The three
methods are compared in experiments on text and vehicle detection and recognition,
examining both the overall and category-level classification accuracy as the number
of features increases. We find that the joint approach reduces error by 50% over the
independent approach when the number of features is small and 20% as the number
increases.

Our earlier character recognition approach used a “flat” model for discrimination
(cf., §4.2.1). That is, oriented edge features were calculated on a grid laid over the
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character and these were directly used to train the discriminant. An alternative, and
more robust strategy, is to calculate some intermediate features. These intermediate
“part-based” features operate on small, local portions of the low-level features, and
typically correspond to higher level combinations of the lower features. There is
psychological evidence for both the flat and parts-based models in humans [98], and
input processing time generally determines which is used. On average, it is the part-
based model that is more robust, as shown in both psychological experiments and
practical computational models. For this reason, we pursue a parts-based approach
to character recognition.

We reviewed relevant work on visual features and feature selection in Section
1.4. Next we will present the alternative strategies for model learning highlighted
above, followed by the various features available for use in our classification models.
Experiments and analysis demonstrating the advantage of joint feature selection are
then given, and we conclude by highlighting our contributions.

5.2 Simple Models for Detection and Recognition

For every query image or sub-image region, our goal is to determine whether the
query belongs to some general category of interest, and if so, to recognize it as a
particular instance of that category. For instance, given an image region, we may
first want to determine whether it is text, and if so, to identify the character. Thus,
every query is assigned both a category and category-specific identity; if it does not
belong to any particular category of interest, we may call it “background.” First we
give several model formulations for this problem, followed by the feature selection
strategies for each.

5.2.1 Model Formulations

In this section, we describe three alternatives to modeling and training (Figure
5.2). First, we describe the common method of treating detection and recognition
independently, followed by a simple flat model that forgoes category modeling and
only aims to identify each query. Finally, we propose a factored model for jointly
learning detection and recognition.

Let c ∈ C represent the category (e.g., text, vehicle, etc.) of an image query x.
For each category c, there is a set Yc of particular objects in that category; e.g., Yc

might be characters for the text category and Yv might be classes of vehicles. If we
include a background category b ∈ C for other regions, then every image region takes
a category label from C and an identity from Y = {b} ∪ ⋃

c∈C Yc. We assume that
objects belong to only one category.

We will use the same class of discriminative Markov models described in Chapter
2. In this chapter, all the models will have only one unknown. Thus, they belong to a
class of “local” classifiers that are equivalent to the familiar discriminative maximum
entropy distribution or multinomial logistic regression. To further clarify the exposi-
tion on feature selection in the next section, we explicitly include the features in the
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Figure 5.2. Graphical representation of the models and training strategies. Dashed
lines indicate the unknowns considered by a training objective function. Left: Inde-
pendent models (there are |C| recognition objectives, one for each category). Center:
Flat model. Right: Factored joint model.

probability conditioning information, compatibility function arguments, and learning
objective functions, rather than having them fixed and implicit as before.

Models for the category detection and recognition problems are typically learned
independently. Formally, our category detection model p

(
c | x, θC , F, I

)
has only one

compatibility function, in the typical linear form

UC
(
c,x; θC , F

)
= θ

C (c) · F (x) (5.1)

for c ∈ C. Similarly, a recognition model will be a probability conditioned on the
category, p

(
y | c,x, θR, G, I

)
, also with a single compatibility function

UR
(
y, c,x; θR, G

)
=

{
θ

R
c (y) · Gc (x) y ∈ Yc

−∞ otherwise
(5.2)

where G = {Gc}c∈C are the features of x for identifying objects in a category c, and
θ

R =
{
θ

R
c

}
c∈C are the corresponding parameters. The parameters and features are

indexed by c because recognition models for different categories need not use the same
features. With the infinite term in (5.2), we have defined p

(
y | c,x, θR, G

)
= 0 for

y 6∈ Yc, which says it is logically impossible for the identity y to be outside of the
given category c. This is equivalent to defining |C| separate models that only make
predictions of identities from a specific category.

Given a set of examples having category and identity labels D =
{(

c(k), y(k),x(k)
)}

k
,

the typical method of training is to independently optimize log posteriors for the
categorization and category-specific recognition models. Here, we rewrite equations
(2.12-2.14) from page 23 for these particular models.

For categorization, the objective function is the log posterior for θ
C :

OC
(
θ

C ; F,D
)

≡ P
(
θ

C
)

+ LC (
θ

C ; F,D
)

(5.3)

PC
(
θ

C
)

≡ log p
(
θ

C | I
)

(5.4)
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LC
(
θ

C ; F,D
)

≡
∑

k

log p
(
c(k) | x(k), θC , F, I

)
. (5.5)

We may similarly define recognition objective functions for each category separately
using a prior PR

c and likelihood LR
c . The likelihood then takes the form

LR
c

(
θ

R; G,D
)
≡

∑

k:c(k)=c

log p
(
y(k) | c(k),x(i), θR, G

)
. (5.6)

There are equivalently |C| recognition models, with a θ
R
c and Gc for each category, so

we may write the total recognition likelihood

LR
(
θ

R; G,D
)
≡

∑

c∈C
LR

c

(
θ

R; G,D
)
. (5.7)

The forms of category specific priors PR
c and posteriors OR

c are analogous to (5.4) and
(5.3), respectively, while and the total prior PR and posterior OR are analogous to
(5.7). Training separate models with independent objectives LC and LR is depicted
graphically in the left pane of Figure 5.2.

Since every object belongs to only one category, an alternative is to forgo category
modeling altogether, and simply have one “flat” model p (y | x, θ, F ) that aims to
determine identity from among all possible labels using the compatibility function

U (y,x; F, θ) = θ (y) · F (x) , (5.8)

for y ∈ Y . If it is needed, the probability for a category label c can be calculated by
summing the probabilities for all y ∈ Yc. Training then involves optimizing a single
posterior, with the likelihood

LF (θ; G,D) ≡
∑

k

log p
(
y(k) | x(k), θ, G, I

)
. (5.9)

One potential problem with this approach is that the label space Y is potentially very
large. Training such a unified flat model with the single objective LF is depicted in
the center pane of Figure 5.2

Alternatively, the joint probability for categorization and recognition can be writ-
ten as the product of two probabilities:

p
(
c, y | x, θC , θR, F, G, I

)
= p

(
y | c,x, θR, G, I

)
p
(
c | x, θC , F, I

)
, (5.10)

In the next section, we consider the case where the same features F = Gc are used
by both the categorization and all recognition models, but different parameters (dis-
criminative feature weights θ

C and θ
R) are used by each. Training the joint model

p
(
c, y | x, θC , θR, F, G, I

)
now involves accounting for both the categorization and

recognition models simultaneously, rather than treating them independently. The
joint likelihood is thus

LJ
(
θ

C , θR; F, G,D
)

≡ LC
(
θ

C ; F,D
)

+ LR
(
θ

R; G,D
)
, (5.11)

with the posterior OJ and prior PJ being analogous sums. Although the previous flat
model (5.8) makes predictions over the same label space, the factored model (5.10)
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is hierarchical (as shown in Figure 5.2), which has several potential benefits. By
acknowledging the existence of categories, we may improve the results by learning
the (presumably similar) categorical instances together, creating more training data
at the higher level. This may also decrease the computational burden of prediction
if the category classifier is run first, since |C| ≪ |Y|. The difference between factored
training with (5.11) and the independent training with (5.5) and (5.7) is manifest
during feature selection; this will also potentially have an impact on computational
performance. A graphical overview of all three models and training strategies is shown
in Figure 5.2.

If categorization and recognition models are learned independently, the features
used to make a category decision might not overlap with the features used for recog-
nition, possibly increasing the total amount of computation. Furthermore, objects in
the same category are visually related, yet the flat model will handle some separately.
Learning category-level models may improve category detection and the ultimate ob-
ject identification results by modeling them together. In the next section, we elaborate
on feature selection for this class of models.

5.2.2 Feature Selection

The algorithm we use for selecting features is a greedy forward method that incre-
mentally adds the feature providing the greatest increase in the log posterior objective
function being optimized [9]. Each model has its own objective (e.g., OC , OR

c , OF ,
and OJ), and the same algorithm is used on each.

As an example, consider the categorization probability p
(
c | x, θC , F, I

)
and cor-

responding parameter posterior objective function OC
(
θ

C ; F,D
)
. At some iteration

of feature selection, the model includes a set of features F (initially empty) and pa-

rameters θ̂C that optimize the posterior OC . Then, some new candidate feature f is
added to the feature set F . Let the augmented features be F ′ and the corresponding
augmented parameters be θ

C′. After optimizing the posterior of the augmented model

to find the new optimal parameters θ̂C′, we may calculate the “gain” of the candidate
feature by taking the difference of log posteriors

GC (f ;D) = OC
(
θ̂C′; F ′,D

)
−OC

(
θ̂C ; F,D

)
, (5.12)

which is equivalent to a probability ratio test of the two models. We may thus
calculate the gain of all features from a pool of candidates and add the feature with
the highest gain to the model. The model is built by iteratively adding the best
(highest gain) feature.

The same process may be followed for the flat model objective OF :

GF (f ;D) = OF
(
θ̂′; G′,D

)
−OF

(
θ̂; G,D

)
. (5.13)

With the factored joint model objective, we ensure that the same candidate feature
f is added to all the models (e.g., OC , and OR

c for each c ∈ C). Thus, we maintain
the same set of features F = Gc for all models in the gain calculation:

GJ (f ;D) = OJ
(
θ̂C′, θ̂R′; F ′, G′,D

)
−OJ

(
θ̂C , θ̂R; F, G,D

)
. (5.14)
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For the independent method, each category-specific objective OR
c goes through its

own feature selection process with the gain

GR
c (f ;D) = OR

c

(
θ̂R′; G′,D

)
−OR

c

(
θ̂R; G,D

)
(5.15)

to determine the category-specific recognition features Gc.
Since many candidate features may need to be examined at each feature selec-

tion iteration, approximations are helpful for speeding the process. First, only the
augmented parameters for the candidate features are optimized [9], e.g., fixing the

optimal parameters θ̂C for the already selected features F in the gain calculation
(5.12). Second, we calculate the gains on a representative subset of the training data
D′ ⊂ D, and then re-calculate the gains of only the top-ranked features using all the
training data. Alternative approximations include assuming that feature gains are
monotonically decreasing as other features are added [139], “grafting,”which adds the
feature whose likelihood gradient is greatest [91], or only including training instances
currently misclassified in the data D for the gain calculation [79].

When two separate models are independently trained for a pipelined framework,
the gain of a feature is only measured with respect to a particular task, categorization
or recognition. However, considering the entire end-to-end task of categorization and
recognition will yield a different ranking of the features in general. We show in Sec-
tion 5.4 that jointly considering tasks during feature selection improves performance
accuracy and speed.

5.3 Detection and Recognition Features

In this section, we describe the two types of candidate features for our model:
region-based texture features and local template features.

All features are derived from the steerable pyramid wavelet basis [109], a set of
scale and orientation selective filters that loosely resembles the “simple cells” in an
initial layer of processing in mammalian visual systems The wavelet coefficients are
complex, representing outputs from paired even and odd filters for each scale and
orientation (channel). Taking complex magnitudes yields phase invariant responses,
similar to complex cells in biological systems.

The first pool of candidate features is a set of image and wavelet statistics [93]
originally crafted for texture synthesis, and used for text detection in Chapter 3.
These include image statistics (four central moments plus min and max) at several
scales, means of wavelet channel magnitudes, and local auto- and cross-correlation
of wavelet channels. Although originally intended to be computed globally over an
image of ergodic texture, we compute them “locally” over small image regions, which
can be efficiently achieved by convolution. These features are described in greater
detail in Chapter 3 (cf., §3.3).

In Chapter 4, we designed a character classifier that used the Gabor filter-based
wavelet channel moduli directly as features. However, these are not robust to image
deformations and our model did not capture any joint relationships between the filter
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responses. Research in cognitive psychology by Rehling [98] indicates that two mech-
anisms operate in human character recognition: an initial “flat” recognizer that is
fast and a secondary hierarchical, parts-based model like LeCun’s convolutional net-
work [65] that is slower but more accurate. To construct a model of this hierarchical
framework, template-based feature maps form our second pool of candidates.

Calculating a template-based feature map from the wavelet channel magnitudes
involves five steps:

1. feature vector normalization (a form of contrast normalization),

2. dilation and downsampling,

3. template correlations,

4. a summation over template channels,

5. and another dilation and downsampling.

Next we describe the processing steps for calculating the feature maps in greater
detail.

The steerable pyramid is a linear wavelet transform. Let sc be a filter for the
particular oriented channel c. An input image region x is convolved with these filters
and the complex modulus (taking even filter responses as the real part and odd filter
responses as the complex part) is computed:

wc ≡ |sc ∗ x| , (5.16)

where |·| is the complex modulus operator.
Because the input x is of unknown contrast, the differential filters of the steer-

able pyramid might have either strong or weak responses. It is not necessarily the
magnitude of these responses that we are most interested in, but how they describe a
shape together. Therefore, the wavelet magnitudes are locally normalized by a pro-
cess similar to that of SIFT [71]: at each location, all the wavelet magnitudes in a
local a×a window centered at pixel i are normalized to a unit ℓ2 norm. This includes
all channels c of the wavelet map w. After normalization, the responses are clipped at
a threshold (0.2 in our experiments). The same responses are then re-normalized in
the same fashion. The resulting values for each channel c are taken as the normalized
responses only at the center location i. Thus, a different window is used to normalize
each location.

Next, to decrease spatial and phase sensitivity, the image’s normalized wavelet
magnitudes are downsampled after taking the maximum over a small window within
each channel (a simple morphological dilation). Dilation incorporates spatial pooling
and provides some amount of flexibility with regard to edge feature location, while
downsampling yields a more compact stack of scale- and orientation-specific images.
The wavelet map as defined in (5.16) will always undergo these post-filtering trans-
formations in this work, so henceforth we use wc to refer to the transformed version.
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Figure 5.3. Extraction of a template from a patch of a training image. Scale and
orientation selective wavelet features are applied to the training image (including the
patch area p outlined in the dashed green box) to yield a wavelet map. The area of
the wavelet map corresponding to the patch is extracted and used as a template for
further processing.

A template t is a small patch extracted from the values of a training example’s
processed wavelet magnitudes. Let p be a training image patch, then we define a
template channel in the same way:

tc ≡ |sc ∗ p| (5.17)

Each t is subsequently normalized to have zero mean and unit ℓ1 norm, over all
channels. An illustration of the template extraction is given in Figure 5.3.

The feature map ft for such a template is calculated by cross-correlations between
an input image’s wavelet features w and the corresponding channels from the template
t—a sum of correlations over each channel c :

ft (x) =
∑

c

tc ⊗wc, (5.18)

where ⊗ is the cross-correlation operator. The feature map ft is then subject to
another dilation and downsampling for even further spatial pooling and dimensionality
reduction. An illustration of the image-to-feature map calculation is given in Figure
5.4. Several example feature maps are shown in Figure 5.5.

Our ultimate goal will be to select the texture statistics or templates that are
most useful for a particular task, be it detection, recognition, or both. Next, we
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Figure 5.4. Computation of a single feature map from one template. Scale and
orientation selective wavelet features are applied to input image x, followed by a
normalization and dilation/downsampling to yield w. Correlations between corre-
sponding channels in a template t and wavelet map w are computed and summed,
followed by another dilation/downsampling to yield a feature map f . Several addi-
tional templates would be used to provide an array of feature maps, which becomes
a feature vector for the classifier.

compare the results of selecting these features under the various strategies outlined
in the previous section.

5.4 Experiments

In this section, we compare four training and feature selection strategies for cate-
gory detection and recognition:

1. The flat classifier trained by (5.13),

2. the factored classifier jointly trained by (5.14),

3. the independently trained classifiers trained by (5.12) and (5.15), operated se-
quentially, and

4. the independent classifiers operated sequentially, but trained using the only the
features selected for categorization by (5.12).
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Figure 5.5. A region (dashed box in top left image) used to construct a template t

and some resulting feature maps ft of the template on different inputs x.

To test our hypothesis that joint feature selection can improve speed and accuracy,
we need data with labels for background, as well as both category and identity. We
perform experiments on a three category problem involving background, text, and
vehicles, with synthetic but realistically difficult data for the latter two categories.

5.4.1 Experimental Data

In this section we describe the data from our three categories.

Background The images from scenes around a downtown area used for detection
in Chapter 3 (cf., §3.4.1) have had the sign regions manually masked out, and square
patches of various scales (128× 128, 64× 64, and 32× 32 all resized to 32× 32) from
the non-sign regions were extracted and labeled as background. A few examples are
shown in Figure 5.1 on page 78.

Characters Rather than manually crop and label individual characters from image
regions, we synthesize similar character images. There are 62 characters in our al-
phabet to be recognized (uppercase, lowercase, and digits), rendered in 934 different
fonts at a 12.5 pixel x-height and centered in a 32× 32 window. Neighboring charac-
ters were sampled from bigrams learned on a corpus of English text (cf., §4.3.1) and
placed with uniform random kerning/tracking. The resulting trigram image was then
subject to a random linear transformation

T =

[
cos θ sin θ

− sin θ cos θ

] [
σx ρx

ρy σy

]
(5.19)
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with rotation θ ∼ N (0, 5◦), scale factors σx, σy ∼ N (1, 0.08), and skew factors
ρx, ρy ∼ N (0, 0.1). Despite the fact that a contrast normalization scheme is used, we
use a random contrast c ∼ Beta (α = 1.72, β = 2.89) and brightness b ∼ Uniform [0, 1 − c]
in the bilevel character training images. Additive Gaussian noise ǫ ∼ N (0, 10−4) is
also added to the images. All these distortion parameters are roughly modelled after
the text from the scene images used in Chapters 3 and 4. Adding these factors to the
data set allows the classifier to learn them and provides a reasonable test bed without
having to manually ground truth individual characters in many images. The label of
these character windows is the center character. Examples are shown in Figure 5.6,
and may be compared to actual images of scene text in Figure 5.1 on page 78. Note
that the identification task involves no character segmentation—the character in the
center of the window must be recognized in the presence of neighboring character
“clutter.”

Vehicles Images of 21 vehicles rendered from three viewing directions and nine
lighting conditions are used from work on vehicle class recognition by Ozcanli et al. [88]1.
The vehicle identification task then consists of labeling the image as one of SUV, pas-
senger car, pickup truck, or van. Examples of the 32 × 32 images used are in Figure
5.6. At such small resolution, recognition is very difficult; while published exper-
iments with this data provide the viewing angle and lighting conditions [88], our
recognition model achieves similar results (57% accuracy) when the view and lighting
are unknown.

Training Data Summary For the background category, our training set has
roughly 65,000 windows at multiple scales from images of outdoor scenes. The char-
acter class has nearly 30,000 character windows (each of 62 characters in 467 fonts).
The vehicle class has nearly 300 examples. The test set is roughly the same size but
comes from a different set of scene images, fonts, and vehicles. Indeed, if we use the
same fonts for testing even with different distortions applied, the recognition results
are much higher.

5.4.2 Experimental Procedure

Features As shown in Figure 5.4 on page 86, the wavelet transform of a given
32×32 patch is dilated over a 2×2 window and then downsampled to 16×16., where
template correlations are calculated. The resulting feature map is then dilated over
a 4 × 4 window and downsampled to 4 × 4 for an extremely compact representation
of responses for each template. Candidate template patches of various sizes (height
and width selected uniformly from 2, 4, 6, 8, or 10 pixels) were randomly extracted
from the training character images (no vehicle or background images were used).
The candidate feature pool contains 2,000 template patches and 418 local wavelet
statistics (from 6 orientations and 3 scales) .

1http://www.lems.brown.edu/vision/researchAreas/vehicle_recognition
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Figure 5.6. Sample images used in experiments. Top: Randomly distorted synthetic
characters. Middle: Vehicles from various classes, views, and lighting conditions.
Bottom: Enlarged views of the low resolution character and car data.
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Regularization In all cases, a Laplacian (ℓ1) prior was used for regularization,
and the value of the hyperparameter α was chosen by cross-validation. The training
set was split in two, half was used for training, and the value of α that yielded the
highest likelihood on the other half was then used on the entire training set. All of
the candidate features were included for cross-validation, since we do not know which
might be useful a priori. However, a slightly smaller portion of the training data was
used since all features for all instances vastly exceeded memory limits.

Class Priors Since text and vehicles are relatively rare in natural scenes, we weight
all the data instances in training and test evaluation such that characters and vehicles
both have a class prior of 1 × 10−4; in other words, the effective ratio of text to
background is almost one to ten-thousand. This is to make the experiments more
realistic.

In particular, if the training data D includes a weight w(k) for each instance k , the
log likelihood of each instance is multiplied by the weight in the likelihood function.
For instance, the category likelihood (5.5) becomes

LC
(
θ

C ; F,D
)

=
∑

k

w(k) log p
(
c(k) | x(k), θC , F, I

)
. (5.20)

We set the weights such that

w(k) = N
ν

Nc(k)

, (5.21)

where N is the total number of training instances and Nc(k) is the number of training
instances of a particular category. The parameter ν = 10−4 for c = Text and c =
Vehicle, while ν = 1−2·10−4 for the Background category. Like the original unweighted
likelihood (where w(k) = 1 implicitly), with this scheme, the total weight mass is N :∑

k w(k) = N .
In our evaluation, to normalize for category difficulty the accuracy is averaged

over categories,

AC
c ≡ 1

Nc

∑

k

δ
(
c(k), ĉ(k)

)
, c ∈ C (5.22)

AC ≡ 1

|C|
∑

c∈C
AC

c , (5.23)

where the true category label is c and the MAP prediction is ĉ (cf., §2.3.1). To
normalize for class difficulty and amount of training data, we calculate an average
recognition accuracy that is the average of the accuracies for each class (equivalently,
the mean of the diagonal entries in a normalized confusion matrix):

AR
y ≡ 1

Ny

∑

k:y(k)=y

δ
(
y(k), ŷ(k)

)
, y ∈ Y (5.24)

AR ≡ 1

|Y|
∑

y∈Y
AR

y , (5.25)

where Ny is the number of test instances from a particular class y ∈ Y .
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Figure 5.7. Average categorization accuracy AC (cf., Eq. (5.23)) for four feature
selection strategies.

When the independently trained models are used sequentially and the number
of features is bounded, we must decide how to allocate the given number of fea-
tures among those chosen by the various models. In a two category problem, this
involves choosing how many selected by the categorization model (i.e., text detector)
are used, leaving the remaining number for the identification model (i.e., character
recognizer). This is a relatively straightforward one-dimensional optimization, but it
becomes more complex for three or more categories. The problem is simplified by allo-
cating features between categorization and recognition, where each category-specific
recognition model is allotted the same number of features. This one-dimensional
strategy may be sub-optimal when some categories are harder to distinguish or are
more important than others. In our experiments, this one-dimensional approximate
optimization strategy is performed on the test data, so the results of the independent
method are optimistic.

5.4.3 Experimental Results

Here we describe and present the results of our experiments for the three category
problem involving text, vehicles, and background. Section 5.4.4 contains an analysis
and discussion of these results.

In Figures 5.7 and 5.8, the performance is shown at each round of feature selection
for the flat and factored models, as well as the independently trained sequential model
and the model that uses only the top categorization features.

Figure 5.7 shows the average categorization accuracy (5.23) of the four methods.
Figure 5.8 shows the average recognition accuracy (5.25) of the four methods.

Two views of the curve are shown to highlight performance with different numbers of
features. The left view shows the early performance, with few features, while the right
view gives the trend as more features are added. The flat model curve terminates
before the others because the natural training termination condition (insufficient in-
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Figure 5.8. Average recognition accuracy AR (cf., Eq. (5.25)) for four feature
selection strategies. Note that the left and right plots are different views of the same
curve.

crease in gain GF ) was met and each round of feature selection takes much longer than
for the other models. The curve for the independent method begins at three features
because one each is allocated to the categorization model, text recognition model,
and vehicle recognition model (the background category has no further sub-category
recognition to be done and therefore does not require a recognition model).

Figure 5.9 shows the relative improvement (reduction in error on average identifi-
cation accuracy) of the factored joint model over the optimal independently trained
models.

To demonstrate how joint feature selection can impact performance, we compare
the independent and factored strategies in a two category experiment involving only
background and text, our primary problem of interest. Figure 5.10 compares the
relative gains of features under the different strategies. For comparison, we plot
normalized gains for each strategy. Considering the categorization task as an example,
the normalized gains are defined as

G̃C (f ;D) ≡ GC (f ;D)

GC

(
f̂C ;D

) , (5.26)

where f̂C is the best feature

f̂C ≡ arg max
f

GC (f ;D) .

Normalized gains for the other strategies may be calculated similarly. Thus, the y-
axis in Figure 5.10 shows what fraction of the best possible gain is achieved by an
alternative feature.

For example, in the top-left graph, we give a uniformly spaced sampling of the
features sorted by their rank according to G̃C (f ;D). The best feature for categoriza-
tion (text detection) is #2222, while the worst is #416. In this graph we see that the
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Figure 5.9. Relative improvement of the factored over independent method on the
average identification accuracy (AFac and AInd).

best feature for detection of course has a normalized gain of 1.0 for the detection task
(the leftmost blue bar), while the normalized gain for this feature on the recognition
task is only about 0.78 (the leftmost green bar).

A scatterplot of normalized feature gains under the categorization, recognition,
and factored joint models for the first round of feature selection are shown in Figure
5.11. This provides a visualization of the gain of all features for each task simultane-
ously. For example, a green plus (+) in the lower-right portion of the graph represents
a feature that is very good for detection, very bad for recognition, and mediocre for
the joint task.

5.4.4 Discussion

Our experimental results demonstrate the superiority of a factored (hierarchical)
joint feature selection over the traditional independent method in several ways. The
first and most obvious way is that the average identification accuracy of the indepen-
dent method is worse than the alternatives for any number of features. Bar Hillel and
Weinshall [42] have shown that with a binary detector for each category, using the
features selected by the category detector for the category-specific recognition is bet-
ter than learning individual binary sub-category recognition models independently.
However, when we have a |C|-way category-level classifier, our results show that using
the best categorization features for recognition does not perform as well as jointly
choosing features for the overall task of categorization and recognition.

Even though the relative improvement becomes more modest as more features
are added, the problem of determining the optimal allotment of features to the in-
dependently trained categorization and identification models remains. An issue with
the independent method is that when there is a prior feature bandwidth limitation—
as there often is due to time constraints in practical systems or space constraints
on portable devices—the optimal feature allotments will undoubtedly depend on the
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Figure 5.10. Relative gains of features for different tasks during the first (left) and
fifth (right) round of feature selection in a two-category experiment with text and
background. Each triplet of adjacent bars shows the gain of a particular feature
under various selection strategies (objective functions G). The triplets in each graph
represent a sample of features (best to worst from left to right) for the particular
selection strategy noted above the graph. See text for additional details.
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Figure 5.11. Scatterplot of normalized feature gains under three models for the two
category (background and text) problem in the first (left) and fifth (right) rounds of
feature selection. The gain of a feature for categorization and recognition are shown
in a traditional scatterplot, and the color of a point is used to illustrate the factored
joint gain.

task. To determine the number of features that should be used for categorization
requires an additional level of optimization that the flat and factored methods do
not.

The most salient aspect of the factored and flat joint methods’ performance is the
improvement over the independent method, particularly when there are fewer features
available; the accuracy of the joint (flat and factored) feature selection strategies ramp
up much more quickly. Even as more features are added the relative improvement of
the factored method over the independent remains above 20% (Figure 5.9).

Although the flat joint model is competitive with the factored model for small
numbers of features, it begins to level off and diverge from the factored model. The
flat joint model is quite cumbersome and takes much longer to train since it has to
discriminate between every class label. Consequently, this model is not likely to scale
well to more categories and identities; so it is not overly important that we do not
yet know its performance for more features.

The bottom-left of Figure 5.7 shows that the flat joint model, which does not
explicitly consider categorization, does not necessarily select features that help with
the more general task; it performs much worse than the factored model at catego-
rization in the face of limited feature bandwidth or computational time. Note that
the factored model, which must consider the subsequent recognition tasks, performs
quite comparably to the model that uses only the best categorization features for the
categorization task.

On the full categorization and recognition task, we may see the reason for the
improvement of the factored over the independent method by considering a feature
selected by one model (the best gain for that model) and examining that feature’s gain
for the other models, as shown in Figure 5.10. In the first round of feature selection,
the top categorization (detection) feature is also a very good feature for the factored
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joint model, and vice versa. This happens because most instances are background,
and it is important to be able to do categorization early. Furthermore, because any
feature will likely discriminate among some characters better than no features, the
top categorization feature also has modest value (about 70% of the maximum gain)
for character recognition. However, by the fifth iteration the best categorization
feature often has almost no value for recognition. With this strategy, by the time
a character is detected, the features that have been computed will be of limited
help in actually identifying the character. By contrast, the first feature selected by
the factored joint model has modest value (also about 70% of maximum gain) for
recognition, but the second feature selected (not shown in the figure) has high values
for both categorization (95% of maximum gain) and character identification (92% of
maximum gain). Adding this jointly optimal feature to the factored model thus not
only aids in detecting instances of object categories, but very early on the system is
also able to identify many more of them as well. When considered independently,
however, the best feature for one task (e.g., categorization) is often not as good for
another (e.g., character recognition).

The figure also shows, in an abbreviated fashion, the distribution of gains under
each model. For instance, by tracing the blue bars in the top-left graph, we see that
categorization features have a rapid, almost linear fall-off in gain in the first round; by
tracing the green bars in the middle-left graph, we find that the recognition feature
gains to do not drop as quickly. The rapid fall-off in the last feature can be explained
by the two classes of features in our feature pool and their relative number, as we
show next.

There are two distinct clusters in Figure 5.11, due to the two types of available
features (texture and template). Along the bottom is a cluster comprised of the
texture features with varying gains for categorization. However, these features all
have almost no gain for recognition. This makes sense because there would be very
little information about character identity in a statistic of wavelet responses over the
entire input. Since they are spread along the horizontal axis, there is some gain
in these features for the text detection (categorization) problem, which makes sense
because text exhibits regular textural properties. We also note that there is gain
among these features for the joint problem, but this primarily only in the early stages
of feature selection where the categorization tends to be more important.

The typical approach to categorization and recognition is sequential. Under such a
strategy, the independent categorization model for the two category (text and back-
ground) problem selects 20 features before the model posterior plateaus, while the
independent character recognizer selects 35 different features. For any window de-
tected as text, the detector will have calculated 20 features, and then an additional
35 features must be calculated for recognition. Since the prior probability for text
is very small, the total additional computation is modest. However, as the number
of object categories grows (as in Figure 1.6 on page 17), the number of queries to
category-specific recognizers gets much larger, and the impact of additional feature
computation for recognition becomes non-negligible. In a street or office scene, two
well-studied applications, there are many regions where generic categorization would
find objects of interest such as people, cars, and text in many places and in need
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of further special recognition. Having a common feature set among such classifiers
with hierarchical categories could greatly reduce computation. Figure 5.8 indicates
that for a given performance level, the independently trained classifiers require the
computation of more features.

5.5 Contributions

The contribution of this area of research has the potential for wider impact.
Whereas nearly all systems for many hierarchical tasks are trained in a segmented
or pipelined fashion, we have indicated the limitations of this approach. When one
considers how errors compound in a multi-stage pipeline, it becomes apparent that
although one can make significant progress in one module, truly solving such problems
will involve optimizing the entire chain.

LeCun et al. [65] put this idea to work in their document processing system that
was trained end-to-end by complete back-propagation in a multi-stage neural network.
Our models and the idea are comparable, but we add the useful notion of probability
to all the parts of the model. This allows us to examine sub-components and interpret
their outputs meaningfully (i.e., the probability of sign versus background).

The idea of joint feature selection and training has been shown to improve perfor-
mance in the area of text detection and recognition. Feature selection has long been an
important aspect in machine learning as well as visual recognition (cf. §1.4). Indeed,
sharing features among classes (e.g., cars, signs, people, faces) for categorization has
been shown to reduce the amount of computation and increase generalization [114].
In Figure 1.6 on page 17, this corresponds to a framework of feature selection and
sharing “vertically” among the classes at the first level of the tree. Our work con-
tributes a framework for feature selection and sharing “horizontally” along the depth
of the tree.

Earlier work by Kusachi et al. [62] treated detection as a recognition problem,
much like we do. Their coarse-to-fine strategy performs nearest-neighbor classifica-
tion, which limits the amount of training data that can be used in a practical system.
Our method is parametric, so that the classifier can improve with more data while
requiring the same amount of computation. In addition, their method suffers from
the same problem as our “flat” model: it does not scale to many more categories.

Our results show that consideration of the entire end-to-end task yields greater
accuracy for a given number of features. In a system with limited computational
resources, joint feature selection also obviates the need to optimize feature allocation
for different tasks.

In more general systems, there will be many detection and recognition tasks. The
benefit of multi-purpose discriminative features for these systems should be even larger
than demonstrated here. With more complex object classes to detect, pooling knowl-
edge of individual members can help boost detection rates, and having features that
are useful for multiple tasks can greatly reduce the necessary amount of computation.

While recent research has focused on developing high accuracy, specialized systems
for tasks such as text or face detection and character or face recognition, our results
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indicate it may be time to consider returning to frameworks that allow joint training
of these powerful new models on broader, end-to-end tasks.

5.6 Conclusions

This chapter has demonstrated that the use of problem context can be useful for
improving results. That is, adding information about categories (as in the rightmost
model of Figure 5.2 on page 80) when training a recognition model can boost accu-
racy or reduce the computation needed. In the two previous chapters we examined
how other kinds of spatial and label contextual influences can improve the results of
detection and recognition, respectively, but these types of context were ignored here.

In our next and final chapter, we show how the output of the detection model
described in this chapter is combined with a method for recognition that uses the
ideas of sparse inference from Chapter 4 to solve the segmentation and recognition
problems simultaneously, giving the final output of the system.
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CHAPTER 6

THE ROBUST READER

In the previous chapter, we showed that a system could be made faster and more
accurate by looking more at the big picture—the end-to-end task of finding and
recognizing text. However, the model treated the problem as a simple classification
task. Our first model in Chapter 3 showed that detection can be improved by moving
beyond a local classifier to one that incorporates more contextual information. Our
goal in the final chapter shall be to create a system that synthesizes these ideas. We
have modeled several computational aspects of reading, but one that remains is in the
gap between detecting text regions and isolating individual characters for recognition.
In this chapter, we focus on the steps between the text detection and recognition
and address the problem of segmentation of the detected region for recognition. By
integrating the segmentation and recognition steps, including word and character
boundaries, both bottom-up and top-down information flows influence the process
so that low-level commitments are not made too early, but also so that high-level
knowledge does not examine unsupported hypotheses.

6.1 Overview

Our previous experiments in Chapter 4 assumed that character and word bound-
aries had been found prior to recognition. When images are relatively simple, of
high resolution, and noise-free, this is a reasonable assumption. However, as the
images degrade, these assumptions become problematic. Even if characters can be
isolated, when we move beyond document processing into scene text recognition, word
boundaries are not as easily predicted by the gaps between characters because the
typography becomes somewhat more fluid. As shown in Figure 6.1, sign design is
often less constrained by character kerning and tracking conventions. Moreover, be-
fore the space between characters can be measured, one must assume that they can
be binarized without error. This is a highly unwarranted assumption when noise and
low resolution can cause the binarization process to yield both broken and touching
characters.

In Chapter 1, Figure 1.5 on page 12 showed the difficulties of segmenting low-
resolution characters that result in a single connected mass. Figure 6.2 on the next
page reveals the opposite problem: Uninformed binarization algorithms can break
characters into multiple segments. Without more information about the characters,
a single algorithm or parameter setting is unlikely to correctly binarize all inputs.
Thus, we should no longer assume that we can easily find segments that correspond
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Figure 6.1. Signs can make prior word segmentation difficult. Examples on the left
have a larger inter-character gap than the inter-word spaces of signs on the right.

Figure 6.2. Broken characters from a standard segmentation algorithm. Left:
Input image. Center: Binarized image. Right: Connected components of binarized
image.

to entire characters. In this chapter, we present a model that works under both of
these circumstances.

We will focus on a common technique that allows the integration of character
segmentation with recognition. First, the two-dimensional detected text region is
transformed into a one-dimensional representation of the text string. This has the
advantage of allowing flexibility and robustness to non-linear text layouts. This rep-
resentation then allows us to use a standard technique for character segmentation
and recognition; namely, a straightforward dynamic programming solution to a pars-
ing/optimization problem. Briefly, such an algorithm examines all possible segmen-
tations of the one-dimensional string and the assignments of character labels to those
segments, and finding the optimal segmentation and labeling. Our approach makes
use of this standard technique, but we extend it to finding word boundaries.

Previous work has assumed that word boundaries may be easily found. However,
kerning and character spacing are often more irregular than in sign typography than
typical document text. If word boundaries are known, it is relatively straightforward
to force the model to interpret a given word image as a lexicon string and return
the highest scoring word [52]. However, when word boundaries are unknown, this
method cannot be applied. Therefore, in a fashion that is analogous to examining
the hypothesis of starting a character at every location, we model the possibility of
beginning a word at every location. To accomplish this, we borrow the sparse inference
tools introduced in Chapter 4 to robustly eliminate unlikely word hypotheses over all
possible spans or segments.

Our model requires no binarization or prior segmentation. Only a coarse estimate
of the baseline is assumed. By integrating recognition with segmentation, at both the
word and character levels, we eliminate the strict reliance on uninformed bottom-up
techniques, once again preventing us from committing unrecoverable errors.
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6.2 Semi-Markov Model for Segmentation and Recognition

Like earlier contextual models for detection (Chapter 3) and recognition (Chap-
ter 4), our model integrating segmentation and recognition will employ compatibility
functions that use various sources of information to relate the label hypotheses to
each other and the image features. However, rather than using a simple discrimina-
tive Markov field model, it will be more natural to use a discriminative semi-Markov
model [101]. This model captures not only the interactions between states in a se-
quence labeling problem, but also the duration of a particular state along the sequence.
Thus, in our problem, segmentations are given by the duration of the character states
along the sequence. In practice, the optimization problem of finding the most likely
sequence of characters under the probability distribution can be solved using a dy-
namic programming algorithm.

The components of our model are analogous to the compatibility functions de-
fined in previous models, except the probability distribution is now over all possi-
ble segmentations and their labels, rather than the labels of a given segmentation.
Whereas the previous definition of p (y | x, θ, I) was a normalized sum of exponenti-
ated compatibility functions on unknown labels yi, our new probability distribution
will involve functions on labels and segments. Our goal will be to find the most likely
segmentation and labeling. We will describe this process in two parts. First, we
discuss how a given segmentation and labeling is scored, which involves describing
the sources of information (and thus, compatibility functions) being used. Second,
we discuss how to find the optimal (or nearly optimal) segmentation and labeling,
which is a dynamic programming problem. All of this assumes a one-dimensional
segmentation or sequence labeling problem. The next section (§6.3) will discuss how
the two-dimensional image is transformed into a one-dimensional representation for
segmentation.

6.2.1 Segmentation and Recognition Model

In this section we describe how a given segmentation and labeling is scored. The
same basic sources of information used earlier for recognition will go into the new
model that also parses the string into segments. Compatibility functions represent-
ing appearance, local language, and lexicon information are all used. Additional
functions capturing layout information such as character bounding box overlap and
inter-character gaps are also employed.

Our previous models assumed a segmentation, and thus a set of unknowns for
which the most likely labeling must be found. In this model, a segmentation will
induce the unknowns and corresponding compatibility functions. The example in
Figure 6.3 shows one segmentation, or parse, of a text string. In this parse, there
are five regions corresponding to character hypotheses that must be given labels.
Notice in particular that one of the parse regions, y4, corresponds to the space char-
acter, ⊔. Modeling spaces explicitly as a character to be recognized will allow us
to seamlessly integrate word boundary detection with character recognition and seg-
mentation. Since, in addition to labelings, different segmentations must compete with
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y1

y2 y4

y3 y5

Figure 6.3. A segmentation of a string of text into five primary regions (indicated
by the dashed lines) that can be scored for various labelings.

each other, the figure also contains regions (marked with solid lines and arrows) that
correspond to properties of the parse itself. Namely, these are overlaps of character
regions (as for y1 and y2) and gaps between them (as for y2 and y3).

When the model includes lexicon information, there will be another set of un-
knowns induced by a particular segmentation. These will correspond to an indicator
of whether a particular chunk of the segmentation corresponds to a lexicon word or
not. Within such regions, a different language model is used. The details of this will
outlined in the next section.

We use five basic classes of terms in calculating the score of a particular parse.
These will correspond to character appearance, character segment overlap, inter-
character gaps, character bigrams, and a lexicon bias. We detail these terms in the
following paragraphs.

6.2.1.1 Character Appearance

Each span or segment is scored for a particular character and span width by a
learned compatibility function. As in previous models, these functions are linear
energies:

UA
r,t

(
y,x; θA

)
= θ

A
r,t (y) · Fr,t (x) . (6.1)

The linear parameters θ
A used in the dot product are dependent not only on the

character identity y, but also the size of the span (calculated from r and t). The
image features Fr,t(x) used are extracted using the hypothesis that the character is
centered in the span from r to t. The discriminative nature of the model allows
us to use portions of the image outside the span without violating any independence
assumptions. For example, using greater image context could help disambiguate some
characters.
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6.2.1.2 Character Bigrams

As in earlier chapters, local language information can be easily used in the form
of bigrams. Each pair of neighboring character spans is given a bigram score from a
linear energy:

UB
(
y′, y; θB

)
= θ

B (y′, y) . (6.2)

6.2.1.3 Character Overlap

A pair of neighboring spans may either overlap or have a gap between them. In
the case of overlap, a simple energy term is added:

UO
n,r

(
θ

O
)

= θO
n,r, (6.3)

depending on how many pixels overlap—from n to r—between the spans. Using this
information, we allow character bounding boxes to overlap (as in the example fi

ligature of Figure 6.3), but the degree of overlap allowed is soft and flexible.

6.2.1.4 Character Gap

As stated above, a pair of neighboring spans may also have a gap between them.
For instance, in Figure 6.3, the character i is separated from g by a few pixels.) In
this case, the gap is scored by a learned compatibility function

UG
n,r

(
x; θG

)
=

r∑

i=n

θ
G · Fi (x) , (6.4)

which is a sum of the scores for each index (column) considered to be a gap. Similar
to the character appearance model, image features from and neighboring the index i

are used with learned linear parameters to score the compatibility of the hypothesis
that the span from n to r is a gap.

6.2.1.5 Lexicon Information

Our model also features a parameter that will allow a bias for character sequences
that compose a lexicon word,

UW
(
θW

)
= θW . (6.5)

When calculating the total score (as detailed in the next section), this term will only
be included in portions that are part of a lexicon word.

6.2.2 Model Inference

The recognition task can be thought of as finding the segmentation and corre-
sponding labeling that maximizes a total (summed) score. The constituents of this
score—the exponent of the exponential model—were described in the previous sec-
tion. Here we describe how to find the segmentation and labeling that gives the best
overall score. The inference process can be accomplished in a model with or with-
out the use of a lexicon. Omitting lexicon information is simpler, so we begin by
describing a model without it.
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Figure 6.4. Illustration of dynamic programming variables n, r, and t, and their
ranges from character gap (top) to character overlap (bottom).

6.2.2.1 Lexicon-Free Parsing

We can build up a two-dimensional dynamic programming table that finds an
optimal parse. Let S (t, y) be the optimal score for a span ending at index t with
character y. If t = 1 is the first index of the sequence, we can iteratively build up the
table via the following recurrence relation

S (t, y) =





maxn,r,y′ S (n, y′) + P (n, r, t, y′, y, 0) , t > 0
0 t = 0
−∞ t < 0

, (6.6)

where P (n, r, t, y′, y, 0) represents the additional parse score for adding a segment
that starts at r, ends at t, and consists of character y, while the previous character
y′ ended at n. The last argument 0 indicates that the additional character is not
forming part of a lexicon word. The maximization occurs for acceptable ranges of n

and r, based on the limits of character gaps and overlaps. Figure 6.4 illustrates how
n and r vary and relate to the segments for a given t.

The additional parse score P is thus composed of the energy terms detailed in
the previous section. It is very important not to bias the total score for parses with
differing number of segments. Therefore, we add simple multiplicative weights that
assign the character appearance and bigram energies to every index point along their
respective spans. Weight W A (r, t) is simply the width of the character span, while
W B (m, n, r, t) assigns the bigram energy UB to every index point along the two spans,
from from the start of the first span (m to n, covered by y′) to the end of the second
span (r to t, covered by y).1 The gap score does not require such bias prevention
because each component of a gap is scored individually, rather than as a unit. The
total additional parse score is

P (n, r, t, y′, y, w) = UA
r,t (y, r, t) ∗ W A (r, t)

+ (1 − w) ∗ UB (y′, y) ∗ W B (m, n, r, t)

+w ∗ UL ∗ W B (m, n, r, t) + UO
n,r + UG

n,r, (6.7)

where m is the beginning of the previous span. The total score for a given segmenta-
tion and labeling is the sum of all the P terms, which would be the value inside the

1Bigram scores get double-counted on every index except those for the first and last characters;
we correct this bias as well in our implementation.
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exponential of the corresponding Markov probability model. Since we are only finding
the most likely parse, the normalization term Z does not need to be calculated.

We note that there are only character scores for segments from r to t that corre-
spond to a set of possible quantized character widths. The final, optimal parse can
of course be found by storing the values of n, r, and y′ that yield the maxima at
each step and tracing them back to the beginning. We especially note that no word
segmentation must be done; it is automatic since a space is among the characters to
be recognized.

6.2.2.2 Lexicon-Based Parsing

When incorporating a lexicon (and thereby allowing a bias for strings to be recog-
nized as lexicon words), the dynamic programming problem becomes more complex.
First consider the case of a one-dimensional segment that is assumed to be just one
word. In this case, we simply constrain the dynamic program to find parses corre-
sponding to a given lexicon word, and then find the word that scores the highest. The
dynamic programming can be interleaved with a trie traversal to speed the processing
of this type of parsing by reusing information[74, 52].2 For every leading substring
of the lexicon, the optimal score is stored for that substring parse ending at t. Thus,
leading substrings shared among words do not need to be re-parsed for each word.

In practice, we cannot assume that the array we are trying to recognize contains
just one word, and this complicates things significantly. A word may start or end
at any point in the line. To handle this, we will maintain a parallel set of dynamic
programming tables, one for non-lexicon parses like before, and another using the
lexicon.

A graph representation of the finite state machine for an example can be seen
in Figure 6.5. Every arc junction represents the ending index t, and the dynamic
programming maximum is calculated over all the incoming arcs. The maximum may
be either from the characters (bottom) governed by a bigram language model or from
the lexicon-constrained words (top).

Like before, one table is built by optimally adding characters using the parse score
P (n, r, t, y′, y, w) and corresponds to the best parse for a particular character y ending
at point t. These are the incoming arcs from the bottom half of the graph in Figure
6.5. Our other dynamic programming table W (t) corresponds to the best score for
a lexicon word ending at t. These are the incoming arcs rom the top half of Figure
6.5. The important thing is how these two tables are related. The optimal character
given by S(t, y) may have been preceded by a lexicon word, and the optimal word
calculated by W (t) may have been preceded by a character that is not from a lexicon
word. The two are linked via dependent recurrence relations.

With a lexicon, the primary recurrence for S(t, y) has two cases. When y 6= ⊔, the
parse score is given by Eq. (6.6), the sum of the best previous score plus the score for
adding the new segment. When the new y is a space, the end of a character string

2A “trie” is a prefix tree in which a character is associated with every node, and the descendents
of any node have a common prefix given by the values on the path from the root (the empty string)
to that node.
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Figure 6.5. Partial finite state word graph for recognition and segmentation. Top
(square) boxes contain the top three lexicon words for a span, and the bottom
(rounded) boxes contain the top three characters for a small span for a lexicon-free
parse. Crossing over from characters to words or going from one word state to another
implies a space was parsed. Spaces are optional between characters.
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is signalled, and this string may either be a lexicon word or not. In this case, the
dynamic program must determine whether the optimal parse is to accept the previous
lexicon word Sℓ or to take the non-lexicon parse ending before the space Sℓ̄:

S (t,⊔) = max {Sℓ (t) , Sℓ (t)} , (6.8)

Sℓ (t) = max
n,r

W (n) + P (n, r, t, ŷn,⊔, 0) (6.9)

Sℓ (t) = max
n,r,y′

S (n, y′) + P (n, r, t, y′,⊔, 0) (6.10)

where ŷn is the last character of the word parse ending at n and all other terms are
as before.

The lexicon word-based relation is similar to the original table S (t, y), but with
an extra layer of complexity:

W (t) = max
n

Sℓ (n,⊔) + B (n, t) . (6.11)

Thus, the score W (t) builds upon the previous scores Sℓ, but adds an additional term
B (n, t) that corresponds to the optimal score for any lexicon word ending at t, with
the previous portion of parsed text ending at n with a space. We must now say how
this term is calculated.

The lexicon word score B is calculated very similarly to the original S of Eq. (6.6).
However, instead of allowing any arbitrary sequence of neighboring characters y′y, the
string is constrained to be a particular lexicon word. Thus, for the kth lexicon word,
we can define a score for a parse of the word up to the ith character, yk

i , that ends at
location t, where the beginning of the word is preceded by a space that ends at n:

C (n, t, i, k) = max
m,r

C (n, m, i − 1, k) + P
(
m, r, t, yk

i−1, y
k
i , 1

)
. (6.12)

As before, the term P is a score for a parse of a particular character including the
appearance model, and gap/overlap scores. However, the language model is altered
since the character is now part of a (hypothesized) lexicon word. The score for
neighboring characters that are constituents of a lexicon word thus replace the bigram
score entirely, as indicated by the argument w = 1. Now, the B (n, t) term of Eq.
(6.11) is the highest valued complete parse of all lexicon words over the span from n

to t,
B (n, t) = max

k
C

(
n, t,

∣∣yk
∣∣ , k

)
, (6.13)

where i =
∣∣yk

∣∣ is the length of the kth word.

6.2.2.3 Computational Complexity

This approach begets a problem of scale. Although the complexity is linear in
the number of lexicon words and the length of the component to be parsed, we have
proposed a method that maintains a hypothesis of every possible word beginning
at every possible location. This cross product of possibilities is impossibly slow in
practice, so therefore approximations must be introduced.
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The complexity of the lexicon-free model is easy to analyze. It is O (rnct), where

r ≡ maximum character width

n ≡ maximum gap

c ≡ size of alphabet

t ≡ length of input.

In practice, all are essentially constant parameters of the model (not the input), with
the exception t, but it is important to consider them in contrast with the lexicon-
based model. A simple worst-case analysis gives a complexity of O (rnuwt), where
terms are as above, adding

u ≡ number of nodes in lexicon trie

w ≡ maximum word width.

Once again, u and w are really built-in properties of the model that do not vary with
the input, so they are “constants” in the final analysis. However, they end up being
rather large constants that are non-negligible in practice. The term u is the number
of unique leading substrings of lexicon words. For two words that share the same
leading substrings, the optimal parse of that substring can be shared. This sharing
reduces the potential complexity in the lexicon we use by 75%—the number of nodes
in the lexicon trie is roughly 25% of the number of characters in the lexicon. The
uw term (which corresponds to and greatly dominates the c of the original model)
indicates that for every location t, an optimal parse of every subword is calculated,
up to the maximum word width. Of course, there are some span widths for which a
subword is too short, due to character width and gap limit, and some span widths
for which a subword is too long, due to character width and overlap limits. Thus,
this simple analysis fails to account for these, but the picture is still clear—without
some sort of approximation, this method is impractical, because uw ≫ c. In the next
section, we outline how, for a given span (up to the maximum word width), we can
limit the number of nodes in the lexicon trie that are parsed.

6.2.2.4 Sparse Lexicon-Based Parsing

To keep the number of hypotheses small, we eliminate words from consideration
based on the relative score of all subword parses over a particular span. Perhaps
the most natural view of the table C (n, t, i, k) is as the score for the subparse of all
words, where the word k is fixed and the segmentation locations n and t are varied.
This is most natural when we are seeking the best segmentation for a given word,
which is the view promoted by Equations (6.11) and (6.12). However, the table is not
only a competition among parses for a given subword, but it may also be viewed as
a competition among subwords for a given span. This view considers fixing n and t

while the subwords vary with i and k. This view allows us to eliminate from further
consideration unlikely subwords on the span from n to t.

For a fixed span from n to t, the term C (n, t, i, k) then represents the energy in
an exponential model, where the optimal subword parse varies with the arguments i
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and k. This joint space over i and k represents every possible sub-word parse for the
span, most of which are extremely unlikely. To speed the processing that is necessary
to eventually find the optimal region word parse B (n, t) calculated from C, we would
like to eliminate these unlikely candidates.

Such pruning is a form of beam search common to such dynamic programming
algorithms for speech recognition [49]. In Chapter 4, we used a divergence bound to
prune individual character hypotheses for lexicon-based recognition when segmenta-
tions were given. Here, we will use the same idea to prune unlikely subwords. Using
the optimal parse score, we define the probability distribution over lexicon subwords
as

p (i, k | n, t,x, θ, I) ∝ exp {C (n, t, i, k)/ T} , (6.14)

where T = n−t+1 is the size of the span. This scaling factor is important to capture
the “average” score for each index/pixel, otherwise the cumulative differences between
scores is extremely large for very long spans, tantamount to a delta function for the
probability distribution.

With (6.14), we have a few options for eliminating some subwords from further
consideration in an approximate Viterbi beam search. For a given n and t, every
entry for i and k that is eliminated further eliminates all words that build upon that
subword parse and no longer need to be considered. With fewer calculations of the
subword score (6.12) to be made, there are fewer complete words to score (6.13). This
is essentially a greedy breadth first beam search strategy. Our options include the
information-theoretic KL divergence criterion used in the lexicon-based recognition
of Chapter 4, a simple N -best list, or a threshold on the ratio of a candidate and the
highest probability for a region. These are subsequently described in more detail.

KL Divergence Beam We may assign a distribution q (i, k) with a maximal num-
ber of zero entries, subject to a bound on the KL divergence between p and q (cf.
Equation (4.15) of Section 4.2.4.2 on page 60). While the scores C do not change,
the non-zero entries of q constitute the beams that continue to be explored.

N-Best List A standard strategy for Viterbi beam search is to sort the scores C

for a given region (n and t), keeping the N best subword parses (i and k).

Probability Ratio A common dynamic alternative to the N -best list is to thresh-
old the ratio of the best score for a region and an alternative candidate,

p

p̂
> τ, (6.15)

where p̂ represents the highest value of the probability (6.14) for a fixed region, spec-
ified by n and t, and p is an alternative value of i and k for the same region.
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Figure 6.6. A character image (top) is transformed by the steerable pyramid, with
even and odd outputs of one orientation channel (middle) each rectified into positive
and negative components (bottom).

6.3 Features and Pre-Processing

In this section we describe in some detail the image features that are used for
recognition, as well as the processing that transforms a detected image region into a
one-dimensional representation suitable for our dynamic programming algorithm.

6.3.1 Image Features

As in earlier chapters, we use the steerable pyramid as the basis of our represen-
tation. However, we are now doing segmentation, and image phase information will
be important so we no longer use the magnitude of the quadrature pairs, but instead
use a rectification step that facilitates better performance in the linear model (6.1).
This rectification separates positive and negative values of each of the even and odd
filters into separate components. That is, each original value x is replaced with two
transform functions, f+ and f−:

f+ (x) =

{
x x > 0
0 x ≤ 0

f− (x) =

{
−x x < 0

0 x ≥ 0
. (6.16)

Example filter outputs and rectified versions are illustrated in Figure 6.6. At each
window being recognized as some character, these four features are used as the vector
Fr,t (x) of Eq. (6.1).

Since the images are of varying contrast and brightness, we must normalize the
filter responses. We use the same strategy described in Section 5.3, reviewed here. At
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each location, all the rectified filter response values for every pixel in an a×a window
surrounding the location are normalized to a unit ℓ2 norm. After normalization, the
responses are clipped at a threshold (0.2 in our experiments), and the same values
are re-normalized. These re-normalized values for each filter response are then kept
for the center location. The normalization strategy implies that a different window is
used to normalize each location.

6.3.2 Pre-Processing

Approximate text baselines can be detected using the classifier described in the
previous chapter. At every pixel in an image, a detector gives the probability of the
pixel being centered on a character of a particular scale (font size). This yields a
set of windows (one corresponding to each detection) containing text of a (roughly)
known size. Furthermore, because the characters in the training data have a baseline
located at a certain row of the window, the baseline is roughly known as well. No top
down information is fed back to the classifier, so the detection probabilities may be
thresholded to yield the window candidates.

At each pixel detected as text, a probabilistic character classifier outputs a score
for a combined character identity and approximate width at that location. In addition
to the 62 characters, the score includes a “space” character as well (along with the
space width). This is important for both bigram modeling and word segmentation.
The classifier also includes a “gap” class that is not an intra-word (i.e., ASCII) space
but is simply a result of the type layout (e.g., kerning).

We assume that we are recognizing a one-dimensional string of text, but not that
it is necessarily horizontal or even linear. Because the detections generate a text
region, and the characters may not even necessarily have a true base “line,” we must
transform the set of character scores (which may be thought of as residing at each
detected pixel), into a one-dimensional representation. Roughly, this proceeds as
follows:

• Horizontally connect any disconnected areas (generally regions with intra-word
spacing larger than the detection window size)

• For each resulting connected component

– Find the unique set of columns for all pixels from the component (assuming
a horizontal orthography)

– These columns become indices into a one-dimensional array representation
of the recognition problem for that component

– For each column in the component

∗ Assign the score for each hypothesis (character, width, space, gap, etc.)
to be the maximum value of that hypothesis over the component’s rows
for that column
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Figure 6.7. An image (a) is put through a text detector that outputs the probability
of text centered at each pixel (b), which is subsequently thresholded (c). Each pixel
in the detection region (d), with center pixels outlined by solid cyan contour, is used
as the center for a character recognition score. Here, the pixel marked with a yellow ⊕
in (d) is the center of a dashed yellow box that is input to the compatibility function
Eq. (6.1), yielding a score for each character and quantized width (e). For the column
marked with a solid red line (d), the score for a particular hypothesis (here, character
e and width 12 pixels) is measured over each row (f), and the maximum compatibility
is used as the score for the hypothesis in that column. The maximization result for
all hypotheses in the column are shown in (g).
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This procedure is outlined visually in Figure 6.7.
Next, we perform a course binarization of the image in each connected component

mentioned above. This step is not strictly necessary, but it speeds recognition by
limiting the number of cut points in the segmentation. We use a variant of Niblack’s
binarization algorithm, which uses a local threshold at each pixel. The threshold is
determined by the mean plus some fraction of the standard deviation of a window
centered at the pixel. This assumes the foreground is lighter than the background. We
currently provide the text polarity to the system, but this analysis is fairly straight-
forward to achieve automatically. The fraction of the standard deviation used to
calculate the local threshold is the same across all images, except in the following
case. If the resulting binarization yields a hypothesized binary character component
that is wider than the assumed maximum character width, the threshold is (recur-
sively) increased for only that component until it yields components that meet this
width criterion. Finally, these character components are examined, and the start
(leftmost column) and end (rightmost column) of each component are used as an-
chors for possible cut points in our one-dimensional segmentation problem. Note that
we assume there is an over-segmentation of the characters, so that components may
be combined, but not split. This makes solving the dynamic program faster because
fewer options for n, r, and t need to be considered, while also solving the problem of
split binarized characters highlighted in Figure 6.2.

We now have a one dimensional problem where for each span or segment of an
array, there is a score, UA

r,t, for that span as a particular character—assuming the span
corresponds to one of the quantized widths of the character classifier. There is also a
score, UG

n,r at each array entry for considering it as part of a intra-word/inter-character
gap.

6.4 Experiments

Here we present experimental validation of our model and inference techniques
on our sign data. First, the training and evaluation data are described, and then we
detail the procedures used for both model training and evaluation. We conclude with
the experimental results, analysis, and discussion.

6.4.1 Experimental Data

Training and testing data are drawn from the same sources as in Chapter 4, with
a few minor modifications.

Sign Evaluation Data 10 of the 95 regions are eliminated because they contain
punctuation characters that our classifier is not currently trained to recognize. Fur-
thermore, the size of the training and recognition text is made more difficult, being
scaled to a 25 pixel font size (roughly 12.5 pixel x-height).

Synthetic Font Training Data The 62 characters are rendered in 934 fonts and
left-right centered in a square window of size 3 ∗ (128 × 128). As in the data for
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Figure 6.8. Synthetic font training data. Top: Full images with borders used for
calculating wavelet features and contrast normalization. Bottom: Final windows
used for training.

Chapter 5, neighboring characters were sampled from bigrams learned from our En-
glish text corpora and placed with uniform random kerning/tracking. No distortion
transformation was applied, but the same random contrast, brightness, and Gaussian
noise are added. In addition, we randomly add solid borders neighboring the text,
with an appearance probability of 0.7 (0.1) for a top/bottom (left/right) edge, with
the location sampled from l ∼ Beta (α = 2, β = 3) and scaled from the range [0, 1] up
to the distance from the image edge to the character. We also subject the resulting
image to an additive linear bias field with random slope m ∼ exp (λ = 1e4) pixels
and uniform direction angle. As mentioned above, the images are scaled down by a
factor of four, for a font height of 25 pixels. The proper amount of Gaussian blurring
was performed prior to downsampling to avoid aliasing. After the features are cal-
culated and normalized (as described in §6.3.1), the character images are cropped to
the center 32× 32 window. Example images are shown in Figure 6.8. Space and gap
images were generated by choosing a space or gap width, and then randomly selecting
neighboring characters from a given font, which are placed along the baseline with
the appropriate distance so that the gap is centered.

Text Corpora The same text is used as in Chapter 4.

Lexicon Because our model does not account for word frequency in its bias, we
reduce the lexicon to words up to the 50th percentile, including only proper
names and upper case words in addition to the standard list. Furthermore, since
there are many two letter words that do not seem to us to warrant inclusion
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(e.g., cs, Bk, Kr, Nb, pd, Tl), we only use these up to the 10th percentile of
frequency.

6.4.2 Experimental Procedure

In this section we outline the procedures used for training and evaluating our
model.

6.4.2.1 Model Training

The model parameters θ =
[

θ
A

θ
B

θ
O

θ
G

θ
W

]
are learned from the data

outlined above or established by a simple manual procedure. While typical parameter
estimation procedures in joint discriminative models require labeled data that includes
all the information at once, we use the decoupled and piecewise training methods
described earlier to learn the compatibilities individually. The only exception is that
θ

A and θ
G are estimated together, since they involve using the same features to

explain competing hypotheses for the same regions.

Appearance and Gap Model The parameters θ
A and θ

G are trained on 934
fonts. The set is split in half first so that cross-validation may be used to select the
value of the hyperparameter α for the Laplacian prior, as in the appearance model of
Chapter 4. We quantize the width of training characters (and subsequent parse spans)
to the values {4, 8, 12, 16, 20, 24, 32} pixels. Space characters have all but the smallest
and largest widths, and training gaps are 1-3 pixels wide, although only features from
the center column of pixels is used in the compatibility.

Bigram Model As in Chapter 4, we use piecewise training for estimating the bi-
gram model weights θ

B. The signs in our data tend to occur in all-capital letters
more frequently than text in our corpora. For that reason, we train a case-insensitive
bigram model for same-case transitions (so that the weight for AB is the same as ab).
The case-sensitive values are used for all intra-case transitions.

Overlap Model The overlap weights are a truncated quadratic. Since the character
widths are quantized in four pixel increments, the largest error in this quantization is 2
pixels on each side. Thus, we allow a two pixel overlap without penalty. The quadratic
coefficients were established so that the penalty would be at a scale comparable to
that of a fraction of the appearance compatibilities (roughly one-third for the largest
overlap of seven pixels).

Lexicon Model We set lexicon intra-word character transition weight θW to twice
the median bigram weight for all bigrams over words in our lexicon.
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6.4.2.2 Model Evaluation

To focus testing on the ability of our model to recognize text, we manually provide
rough detection windows corresponding to those that would be provided by the text
detector outlined in Chapter 5. This eliminates egregious false positives and false
negatives, but is by no means a perfect localization. Because the baseline is only
approximately and imprecisely specified, we must still perform the score maximization
that is part of the linearization described in Section 6.3.2.

Using 85 text regions consisting of 183 words and 1144 characters we report the
character recognition error of our system using the Levenstein edit distance. The word
error is given by the ISRI OCR performance tookit (OCRtk) program wordacc3. The
program ignores number strings, however, so we manually fix the program output for
the five signs in our data containing numbers.

We compare the results of our model to those of commercially available OmniPage
15 software. Both the original image and a binarized version that is the result of
Niblack’s binarization algorithm (described above) are input to the software. Our
model can be operated in an “open vocabulary mode” without a lexicon, in which
case only Equation (6.6) is used for inference. Alternatively, a “closed vocabulary”
mode forces words to be from the lexicon if we ignore the non-lexical parses. The
mixed vocabulary mode is the full model presented above, and it recognizes words
both in and out of the lexicon.

Upon inspection, some of the signs in the evaluation data contain fonts that,
though normalized for font size (e.g., height), otherwise have character bounding box
aspect ratios that are not present in our training data; they are either narrower or
wider. Ideally, we would have such fonts in our training data. As a compromise,
we hypothesize an unknown aspect ratio. Running the recognition/parser at five

different horizontal scales,
{

1
2
,
√

2
2

, 1,
√

2, 2
}

, we keep whichever has the highest final

score S (tend, y).

6.4.3 Experimental Results

Figure 6.9 evaluates the utility of the various beam search strategies, displaying
the error versus average recognition time (per horizontal pixel). Each strategy has
a different parameter (ǫ for KL divergence, N for N -best, and τ for the probability
ratio), and these parameters are varied to increase or decrease the size of the beams
during search. As the beam size increases, more options are considered and it is less
likely that a correct word will have been dropped prematurely, but it will take more
processing time to maintain the list of word candidates.

The overall results are collected in Figure 6.10. The mixed vocabulary mode,
drawing on words both in and out of the lexicon, yields roughly a 13% error reduc-
tion over open and closed vocabulary modes. For best performance, the commercial
software requires the input to be binarized before being processed. When we optimize
for the unknown aspect ratio of the font we reduce our error by nearly 15%, which is

3http://www.isri.unlv.edu/ISRI/OCRtk

116



0.1 0.15 0.2 0.25 0.3 0.35
17.4

17.6

17.8

18

18.2

18.4

18.6

18.8

Time (s) / Pixel

E
rr

or
 (

%
)

 

 

KL
N−Best
Ratio

Figure 6.9. Comparison of beam search strategies as ǫ, N , and τ are varied.
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Figure 6.10. Comparison of recognition methods: our model’s open vocabulary
(OV), closed vocabulary (CV), and mixed vocabulary (MV) modes; OmniPage soft-
ware results on image input (OP) and binarized input (bOP); our multiscale approach
(MS) and hypothesized ideal (ID).
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Figure 6.11. Example images correctly read by our model and the corresponding
binarization and OmniPage output.

also a 10% error reduction over OmniPage. This approach to handling narrow and
thin characters does indeed fix many errors, but it also introduces some when the
highest scoring parse occurs at a scale other than 1. In the ideal case, if adding such
characters to the training data only improved the results and did not make them
worse, our error rate would drop by 33%.

Examples that our model reads correctly, along with the corresponding binary
input to OmniPage and its output are in Figure 6.11. We also probe the behavior of
our model in the face of lowered resolution, as shown in Figure 6.12. Two input images
are subject to low-pass filtering before being recognized by our system. Similarly, we
binarize these blurred images before passing them to OmniPage. In this case, the
binary images are not used to limit anchor points for segmentation in our model—all
indices are considered as cut points in the blurred images.
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Figure 6.12. Example recognition comparison at lower resolutions. The input im-
ages are low-pass filtered by a Gaussian of scale σ px.

Table 6.1. Comparison of word errors for the multiscale approach of our model and
the binarized images input to OmniPage .

Method Word Error

MS 31.2%
bOP 26.8%
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Table 6.1 compares the word error between the systems.

6.4.4 Discussion

Surprisingly, the KL divergence-based beams, though adaptive and globally aware
of the score distribution for a span, do not perform as well as N -best for this task.
One reason for this could be that we have somewhat ham-handedly imposed a distri-
bution on a set of optimal scores, whereas the original KL beam search used proper
probability distributions from forward-backward message passing in a linear chain
model. Ultimately, it seems the N -best method is best for our model and data, while
the ratio threshold, which measures the difference between optimal and other can-
didate scores, is a good adaptive measure. We estimate that very little accuracy is
lost by using the beam search approximation because the performance in Figure 6.9
levels out for parameter values with much longer processing times not shown on the
graph. Thus, errors being made are likely not due to prematurely eliminated word
hypotheses.

We can correctly recognize signs with a wide variety of fonts. As shown in Figure
6.11, many of these frustrate even a top commercial system. This could be due to
a variety of reasons, but it seems the main one is a brittleness with respect to font
diversity and noise. Despite the fact that they rhyme, the prediction of Maus for
HOUSE is perplexing, as are the next three results. The unusual A in LIBRARY seems to
be mistaken for an FI ligature. It seems the M in AMHERST is entirely too odd and gets
recognized as miscellaneous punctuation. Even without the aid of a lexicon, our sys-
tem recognizes this correctly. The TAVERN sign is interesting. Whereas the E character
is broken up after binarization so that missing bottom the leg it does indeed look like
an F, the subsequent two characters are ignored. While our model has the advan-
tage of being forced to interpret the entire region, it seems odd that these characters
(which are just blobs to the software), having roughly the same height and width as
the others, are overlooked. We do note that the next few examples (DOUGLASS, Free
checking, MONKEY, and Attorney at Law) are not recognized by our system at the
original aspect ratio, but undergo the horizontal scaling optimization. However, we
have no way of using a similar process for OmniPage since it does not report any sort
of “confidence” that might compare to our optimal parse score.

Our model also has potential for handling recognition and word segmentation at
lower resolutions than it was trained upon. We do not know how OmniPage handles
word segmentation, but it does fail to place a space between the two words in Figure
6.12 (bottom), even at full resolution. As the resolution of images is lowered, we
imagine it will be even harder to perform a word segmentation prior to recognition
with unusual kerning patterns such as these.

While the word error of the our model compared to OmniPage seems larger (Table
6.1), most of the difference is due to numbers being recognized incorrectly. Due to
the nature of our corpus, numbers appear very infrequently and so there is a bias
against them in the bigram model. Such errors would likely be fixed with better
bigram statistics for numbers.
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Figure 6.13. Examples of failed segmentation and/or recognition. Blue boxes in-
dicate character bounds, and the predicted character appears centered in red. Inter-
word spaces are marked by empty boxes.
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Of course, our model has room for improvement. Figure 6.13 contains examples
of some of our system failures. We have used a limited lexicon to avoid biasing
recognition toward very infrequent words. As a result, the word “FIBER” is omitted
from the lexicon, and gets misrecognized in Fig. 6.13(a). The system instead prefers to
split the R into IA. An integrated trigram model would probably fix this problem; it is
correctly recognized when the word is in the lexicon. One possibility for improvement
would be to use a word-specific lexicon weight, rather than the generic θW , so that
infrequent words might have a much lower bias but could still be included.

Another failure is that of the character appearance model. Because the discrimi-
nant (6.1) is linear in the features, certain relations cannot be captured. For instance,
in Fig. 6.13(b) the leading P is recognized as an F. Presumably, the weights on the
vertically oriented filters in the upper-right portion of the character bounding box for
an “F” are not strong enough to prevent the confusion. Alternatively, many train-
ing instances of the F could have very close neighbors, so that verticle edges in that
region are not any more inconsistent with F than they are consistent with P. More
importantly, the image features are not modeled jointly. Thus, the T being predicted
as I happens because the crossbar of the T in a serif font could be the same as the top
of an I. Only by checking the consistency of both can this be avoided. A quadratic
discriminant could solve this.

The space character model also has issues that need addressing. In Fig. 6.13(c),
an actual character is covered by an inter-word space. While image features are input
to this discriminant, it is not sufficient to prevent such errors. A more problematic
issue with the spaces has to do with the distribution of their sizes within a query.
Other than a rather generous limit on the size of a gap between characters within
a word, there is nothing to prevent such gaps from being spaces, or vice-versa, save
for the interpretation. Thus, it is primarily the neighboring characters (e.g., resulting
bigrams or words), that determine whether such sparse image features are interpreted
as gaps or spaces. In Fig. 6.13(d), several rather large gaps are confused with spaces.
Although there would be a great increase in computational complexity due to a large
change in the Markov properties of our model, one might imagine a Markov chain on
the size of both inter-character gaps and inter-word spaces.

Finally, in order to allow a relatively straight-forward dynamic programming solu-
tion, we have ignored the font adaptivity proven useful in Chapter 4. Thus, we see in
Fig. 6.13(e) that while the the first Via is recognized correctly, a seemingly identical
instance is missed entirely. Finding ways to include this information, even if only in
approximation, could help eliminate such errors.

We also note that this performance has been achieved with a limited amount
of training data. The recognition accuracy of the model on the training data is
very high. Therefore, we believe the parametric capacity of the model to recognize
complex characters in many fonts is great. By employing methods that can increase
the amount of training fonts and character examples, we believe that the practical,
absolute performance of our model would be dramatically improved.
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6.4.5 End-to-End Demonstration

In this section we describe and give a qualitative analysis of an end-to-end system
for scene text detection and recognition. For detection, we use a model like the one
described in the previous chapter. Since detection is a categorization-only task, we
use the top 50 features selected for detection only. The template-based features are
used exclusively for implementational simplicity; it is easier to calculate a subset of
these features than subsets of the texture statistic features. The two class model is
trained on the character and background data described in Chapter 5 (§5.4.1). For
recognition, we use precisely the same model and pre-processing described in this
chapter.

The text detection model is scale-specific; therefore, we run the detector on several
scaled-down versions of the input image. Four scales per octave are used, and an
appropriate Gaussian blur is applied before a downsampling operation with bicubic
interpolation. Since the detector has no model of spatial context for continuity, we
apply a moderate horizontal dilation to connect nearby text regions and pick up any
missing characters on the edges. After dilation, we discard any text regions below
a certain width to eliminate isolated false positives. This yields a set of candidate
text regions; any detected pixel in these regions is a candidate for being centered on
a character (as was shown for a single scale in Figure 6.7((d)). An example image,
the multiscale detection responses and the corresponding regions are shown in Figure
6.14.

Our recognition algorithm is subsequently run on each of these candidate regions
with the image scaled appropriately before recognition features are computed. If
candidate regions of different scales overlap, the region with the highest per-pixel
average parse score is taken as the final result. Calculating the per-pixel average is a
normalization that makes scores comparable across scales. Figure 6.15 shows example
recognitions and scores for the multiscale detections of Figure 6.14.

In the quantitative experiments of this chapter, we have shown that even under
perfect text region detection, our recognition algorithm performs better than the
commercial OmniPage software. Here, we demonstrate that good text detection is
also important for producing accurate results. Figure 6.16 shows some example scene
images from our data as well as the ICDAR robust reading competition [72]. In
Figures 6.17 and 6.18 and Table 6.2, we qualitatively compare our end-to-end system
to OmniPage, using the raw image as input to both.

6.5 Contributions

It has long been known in the handwriting recognition literature that it is neces-
sary for character recognition to be combined with character segmentation, e.g., [64].
Furthermore, the space between words is not consistently larger than that between
characters. While most approaches focus on word segmentation prior to recognition
[77, 47], some have combined candidate word segmentations to find the best recog-
nition [90]. This is analogous to continuous speech recognition, where there is very
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Figure 6.14. Example image (top) with multiscale text detection probabilities (left)
and resulting detected regions (right).
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T he P hoto S p ecialists The Proto Specimo rt

(a) (b)

Thr rmno Sprcias we rmm  m emn

(c) (d)

Panel Scale Output Score
(a) 20 The Photo Specialists 28.97

(b) 2−
1
4 The Proto Specimort 28.29

(c) 2−
1
2 Thr rmno Sprcias 26.24

(d) 2−
3
4 we rmm memn 24.36

Figure 6.15. Recognition output on the candidate regions detected at multiple
scales. The highest scoring output is the final result.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.16. Example scene images used for qualitative comparison.

126



The P hoto S p ecialists

L L O Y D S B A N K

(a) (b)

Fleet MILL ANTIQUM

(c) (d)

IP m wi
M o fo o f we yl

FIR E E  D E LIV E p

(e) (f)

Figure 6.17. Example output of our end-to-end detection and recognition system.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.18. Example screen shots of detected text regions (solid yellow outlines)
from OmniPage.
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Table 6.2. Comparison of recognition results between our end-to-end system and
OmniPage with raw image input. Panels refer to the images of Figures 6.16-6.18. The
error measure is edit distance.

Panel Correct Output No. Chars.

(a) The Photo Specialists 21
(b) LLOYDS BANK 11
(c) Fleet 5
(d) MILL ANTIQUES 13
(e) No footway for 450 yds 22
(f) FREE DELIVERY 13

Panel Our Output No. Errors

(a) The Photo Specialists 0
(b) LLOYDS BANK 0
(c) Fleet 0
(d) MILL ANTIQUM 2
(e) M o fo o f we y l IP m wi 18
(f) FIREE DELIVEp 3

Panel OmniPage Output No. Errors

(a) ı̈ I taw aim 1717 ı̈ı̈ı̈ı̈ ~Nal ti7Tir-TWITE.A 36
(b) 0 11
(c) 43 010 Fleet ri 10
(d) MILL ANTIQUES J L7:"? 4, 11
(e) ı̈ı̈ı̈ı̈ı̈%ı̈"4 "ferNirsiNee-s""esase".ı̈ı̈^

noThoesnespor. a ’qpseNoı̈ s~N~N ssseese~Ncee,

esses sisso%ı̈ı̈ for 450 yds No footway) Ht. t

108

(f) Ma OS 12

129



little signal to indicate word boundaries, and many possibilities must be considered
[49].

Much prior work has been lexicon driven, but to robustly recognize a variety of
inputs, words from outside the lexicon must be allowed. However, previous work
acknowledging this has assumed both word and character segmentations, or ignored
more powerful back-off models, such as character bigrams [138]. While some scene
text readers use lexicons in a post-processing stage [7], integrating lexicon processing
with recognition generally yields better results, as shown in Chapter 4.

The primary contribution of this chapter is in applying the techniques used for
integrating character segmentation and recognition to word segmentation recognition,
while retaining the ability to recognize out of lexicon words. This is especially impor-
tant for scene text, which can feature many uncommon words (street names), as well
as numbers (addresses) which are not in typical lexicons. While Jacobs et al. [52] can
recognize low resolution words, their work is based upon the assumption of prior word
segmentation. We have shown that, even in low resolution, our model can integrate
these processes where prior word segmentation would likely fail.

We also believe we have contributed a technique for preventing bias in number
of segments (characters) used to parse and recognize a string. This is a common
problem and many normalize the total score by using the number of segments. Such
a strategy prevents long strings with poor character scores from additively beating
short strings with high character scores. However, we argue that it is not the right
scheme. After all, we are optimizing over both segmentation and recognition. It is not
how well a label explains a particular span (a given portion of the segmentation), but
how well that label explains all the components of that span (the components being
pixel column indices in our model). Thus, we ensure that every parse is competing
on the same scale by normalizing using the “area” explained by each portion of the
parse (in this case, the length of a span). In our formulation, a very large (wide)
segment with a low score could have a heavier impact than in earlier methods, where
it may only marginally affect an average score over a handful of segments. In short,
we prefer to maximize the per-pixel normalized score, rather than the per-segment
normalized score.

Though our model is moderately complex, it is rendered usable by some stan-
dard approximation methods. While others have used the KL beam for prediction
and training using forward-backward message passing [89, 30], we have attempted to
adapt it for the Viterbi algorithm and found our adaptation lacking for this partic-
ular environment. Perhaps in situations where N -best with a relatively small N is
not appropriate (as it seems to be here), the more dynamic KL approach could give
better results.

6.6 Conclusions

We have presented a model that can correctly and flexibly recognize scene text
under a variety of conditions including unusual fonts, low resolution, and non-lexicon
words. In achieving a greater total character accuracy, it performs better than com-
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mercial document recognition software, which has been used in previous scene text
readers. By integrating a lexicon to aid recognition, we can improve our performance,
but we also allow non-lexicon words when warranted by the data. In addition, we
need not perform prior word segmentation, because word recognition is integrated
with the segmentation process, just like character segmentation and recognition. Be-
cause no binarization is required, we can recognize characters at lower resolution. Our
robust probabilistic model is straightforward to train on data and requires little to
no hand-tuning of parameters.

Once again, we have demonstrated a model that integrates several levels of pro-
cessing which would be prone to error if done in isolation.
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CHAPTER 7

SUMMARY AND CONCLUSIONS

This thesis has provided models that integrate the processes involved in reading—
bottom-up detection, spatial context, segmentation, recognition, font-consistency,
top-down lexicon information—and shown how more extensive communication be-
tween these processes during testing and training can improve results. In this, our
final chapter, we briefly summarize what we have done, what it means, and to what
directions it may point.

Our detection model eliminates the need for heuristic layout rules by learning
the parameters for spatial context. We eliminate the “peephole” view of the sliding
window approach and unify the entire process under a probabilistic model. Our
first recognition framework brings together several information sources, most notably
character similarity and a lexicon, into a seamlessly unified model. We have also shown
how training a detector and recognizer together can improve accuracy and reduce
computation time by promoting feature utility overlap and forcing interpretations
earlier. Finally, our robust reader needs only rough text detection windows and
completes both word and character segmentation in a recognition-driven process.

In solving the problems involved in teaching a computer to read—from detection,
to segmentation and recognition—we have promoted approaches that utilize as much
relevant information as possible. For detection, it was the spatial configuration of text
regions. For recognition, it was character similarity, language statistics, or a lexicon.
For the intersection of detection and recognition, each was allowed to influence the
other in determining the features available for the discrimination task. In all of these
cases, we have demonstrated that using relevant information in pipelined stages would
or could not perform as well as the integrated approach.

The general contribution of the thesis is in its theme: unified information process-
ing. Integration makes a marked difference in the accuracy of scene text reading, and
some text is impossible to read without it. Our specific contributions include:

• a text detector that utilizes spatial dependencies to find text of all scales and
orientations with a single classification,

• a scale-specific text detector whose features are shared with a recognizer for
greater speed and accuracy, and

• two robust recognizers that enforce font consistency and use top-down lexicon
knowledge to drive recognition and segmentation.
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In addition to the models, we have contributed the training and inference techniques
to facilitate their practical use. These technical contributions include:

• a marginal likelihood for partially labeled data,

• a simple trained function for determining character similarity,

• the use of sparse belief propagation for graphical models with cycles,

• a joint discriminative likelihood for multi-task feature selection, and

• an appropriate scheme for preventing bias in the number of segments with our
recognition-driven segmentation algorithm

For decades, document recognition systems have focused on optimizing individual
components of the problem, such as zoning (finding coherent text regions), word seg-
mentation, and isolated character recognition. Indeed, when development began and
much work needed to be done to make these systems practical and operable, this was
a necessary and fruitful approach. However, as 99.5% recognition accuracy on a laser-
printed document in the Times New Roman font becomes the norm, the document
recognition community will face the challenge of journal archives with complex fonts
and layouts, camera-captured document images with noise and low-resolution, and
scene images with text in arbitrary colors, layouts, and world orientations. While
these drastically more complex problems will undoubtedly require recognition fea-
tures that are as intricate and massively parallel as biological machinery and training
experience on par with that of humans, we believe that the unified approach to train-
ing and recognition will be no less necessary to achieve human-level performance. In
many of these tough problems, there is just not enough discriminating local informa-
tion to make bottom-up, pipelined commitments without inevitably making errors.
Conversely, without consideration of the information content in lower-level processes,
post-processing with top-down information is unlikely to fix major problems either.
Indeed, the unified approach will become increasingly necessary to advance the state
of the art and push computational systems toward human capabilities.

That two-hundred years ago, the first known character recognition system was
developed to aid the visually impaired is telling. Whether one views the contributions
from that patent to this thesis as a matter of teaching computers to read or as
giving a limited form of sight to the blind, the progress of the last six decades has
been remarkable. The advent of machine learning has had an undeniably positive
impact upon reading systems. Our hope is that more extensive training and robust,
integrated reasoning processes—such as those presented in this thesis—will bring
great developments over the next six decades. Indeed, we believe that by the end
of the next two-hundred years, computers should indeed be accomplished grammar-
school level readers.
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conditional random fields for image labeling. In Proc. Conf. on Computer Vision
and Pattern Recognition (2004), pp. 695–702.

[42] Hillel, Aharon Bar, Hertz, Tomer, and Weinshall, Daphna. Efficient learning of
relational object class models. In Proc. Intl. Conf. on Computer Vision (2005),
vol. 2, pp. 1762–1769.

[43] Hillel, Aharon Bar, and Weinshall, Daphna. Subordinate class recognition using
relational object models. In Advances in Neural Information Processing Systems
(NIPS) (2007), B. Schölkopf, J. Platt, and T. Hoffman, Eds., pp. 73–80.

[44] Ho, Tin Kam, and Nagy, George. OCR with no shape training. In Proc. Intl.
Conf. on Pattern Recognition (2000), vol. 4, pp. 4027–4030.

[45] Hobby, John D., and Ho, Tin Kam. Enhancing degraded document images via
bitmap clustering and averaging. In Proc. Intl. Conf. on Document Analysis
and Recognition (1997), vol. 1, pp. 394–400.

[46] Hong, Tao, and Hull, Jonathan J. Improving OCR performance with word
image equivalence. In Symposium on Document Analysis and Information Re-
trieval (1995), pp. 177–190.

[47] Huang, Chen, and Srihari, Sargur N. Word segmentation of off-line handwritten
documents. In Proc. Document Recognition and Retrieval (Jan 2008).

[48] Huang, Gary, Learned-Miller, Erik, and McCallum, Andrew. Cryptogram de-
coding for optical character recognition. Tech. Rep. UM-CS-2006-045, Univer-
sity of Massachusetts-Amherst, Computer Science Research Center, University
of Massachusetts, Amherst, MA 01003-4601, 2006.

[49] Huang, Xuedong, Acero, Alex, and Hon, Hsiao-Wuen. Spoken Language Pro-
cessing: A Guide to Theory, Algorithm, and System Development. Prentice
Hall PTR, 2001.

137



[50] Hull, Jonathan J. Incorporating language syntax in visual text recognition
with a statistical model. IEEE Transactions on Pattern Analysis and Machine
Intelligence 18, 12 (1996), 1251–1256.

[51] Jaakkola, T. S., and Jordan, M. I. Bayesian logistic regression: a variational
approach. Statistics and Computing 10 (2000), 25–37.

[52] Jacobs, Charles, Simard, Patrice Y., Viola, Paul, and Rinker, James. Text
recognition of low-resolution document images. In Proc. Intl. Conf. on Docu-
ment Analysis and Recognition (2005), pp. 695–699.

[53] Jain, A.K., and Bhattacharjee, S. Text segmentation using Gabor filters for
automatic document processing. Machine Vision Applications 5 (1992), 169–
184.

[54] Jeon, B.W., and Landgrebe, D.A. Classification with spatio-temporal interpixel
class dependency contexts. IEEE Transactions on Geoscience and Remote Sens-
ing 30, 4 (July 1992), 663–672.

[55] Jones, Mark A., Story, Guy A., and Ballard, Bruce W. Integrating multiple
knowledge sources in a Bayesian OCR post-processor. In Proc. Intl. Conf. on
Document Analysis and Recognition (1991), pp. 925–933.

[56] Jurie, Frederic, and Triggs, Bill. Creating efficient codebooks for visual recog-
nition. In Proc. Intl. Conf. on Computer Vision (2005), pp. 604–610.

[57] Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. Optimization by simulated
annealing. Science 220, 4598 (1983), 671–680.

[58] Kopec, Gary E., and Lomelin, Mauricio. Document-specific character template
estimation. In SPIE Intl. Symposium on Electronic Imaging (1996), pp. 14–26.

[59] Kornai, András. Language models: where are the bottlenecks? AISB Quarterly
88 (1994), 36–40.

[60] Kschischang, F.R., Frey, B.J., and H.-A.Loeliger. Factor graphs and the sum-
product algorithm. IEEE Transactions on Information Theory 47, 2 (Feb.
2001), 498–519.

[61] Kumar, Sanjiv, and Hebert, Martial. Discriminative random fields: A discrimi-
native framework for contextual interaction in classification. In Proc. Intl. Conf.
on Computer Vision (2003), vol. 2, pp. 1150–1157.

[62] Kusachi, Yoshinori, Suzuki, Akira, Ito, Naoki, and Arakawa, Kenichi. Kanji
recognition in scene images without detection of text fields. In Proc. Intl. Conf.
on Pattern Recognition (2004), vol. 1, pp. 457–460.

138



[63] Lafferty, John, McCallum, Andrew, and Pereira, Fernando. Conditional random
fields: Probabilistic models for segmenting and labeling sequence data. In Proc.
Intl. Conf. on Machine Learning (2001), Morgan Kaufmann, San Francisco,
CA, pp. 282–289.

[64] LeCun, Y., Boser, B., Denker, J. S., Henderson, D., Howard, R. E., Hubbard,
W., and Jackel, L. D. Backpropagation applied to handwritten zip code recog-
nition. Neural Computation 1, 4 (1989), 541–551.

[65] Lecun, Y., Bottou, L., Bengio, Y., and Haffner, P. Gradient-based learning
applied to document recognition. Proc. IEEE 86, 11 (Nov 1998), 2278–2324.

[66] Lee, Dar-Shyang. Substitution deciphering based on HMMs with applications
to compressed document processing. IEEE Transactions on Pattern Analysis
and Machine Intelligence 24, 12 (2002), 1661–1666.

[67] Li, Huiping, Doermann, David, and Kia, Omia. Automatic text detection and
tracking in digital video. IEEE Transactions on Image Processing 9, 1 (2000),
147–156.

[68] Li, Stan Z. Markov Random Field Modeling in Image Analysis, second ed.
Computer Science Workbench. Springer-Verlag, Tokyo, 2001.

[69] Liang, Jian, Doermann, David, and Li, Huiping. Camera-based analysis of text
and documents: a survey. International Journal on Document Analysis and
Recognition 7, 2–3 (2005), 84–104.

[70] Lienhart, Rainer. Automatic text recognition for video indexing. In Proc. of
ACM International Conf. on Multimedia (1996), pp. 11–20.

[71] Lowe, David G. Distinctive image features from scale-invariant keypoints. In-
ternational Journal of Computer Vision 60, 2 (2004), 91–110.

[72] Lucas, S. M., Panaretos, A., Sosa, L., Tang, A., Wong, S., and Young, R.
ICDAR 2003 robust reading competitions. In Proc. Intl. Conf. on Document
Analysis and Recognition (2003), vol. 2, pp. 682–687.

[73] Lucas, Simon M. Text locating competition results. In Proc. Intl. Conf. on
Document Analysis and Recognition (2005), pp. 80–85.

[74] Lucas, Simon. M., Patoulas, Gregory, and Downton, Andy C. Fast lexicon-
based word recognition in noisy index card images. In Proc. Intl. Conf. on
Document Analysis and Recognition (2003), vol. 1, pp. 462–466.

[75] Manjunath, B.S., and Ma, W.Y. Texture features for browsing and retrieval of
data. IEEE Transactions on Pattern Analysis and Machine Intelligence 18, 9
(1996), 837–842.

139



[76] Manmatha, R., Han, Chengfeng, Riseman, E. M., and Croft, W. B. Indexing
handwriting using word matching. In Proc. Intl. Conf. on Digital Libraries
(New York, NY, USA, 1996), pp. 151–159.

[77] Manmatha, R., and Rothfeder, Jamie L. A scale space approach for automat-
ically segmenting words from historical handwritten documents. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 27, 8 (2005), 1212–1225.

[78] Mathis, Charles, and Breuel, Thomas. Classification using a hierarchical
Bayesian approach. In Proc. Intl. Conf. on Pattern Recognition (2002), vol. 4,
pp. 103–106.

[79] McCallum, Andrew. Efficiently inducing features of conditional random fields.
In Proc. Conf. on Uncertainty in Artificial Intelligence (2003), pp. 403–410.

[80] McQueen, Malcolm, and Mann, Samuel. A language model based optical char-
acter recognizer (OCR) for reading incidental text. In Proc. of the National
Advisory Committee on Computing Qualifications (2000), pp. 207–212.

[81] Minka, Thomas P. A Family of Algorithms for approximate Bayesian inference.
PhD thesis, MIT, Cambridge, MA, 2001.

[82] Mundy, Joseph L., and Strat, Tom, Eds. IEEE Worskshop on Context-Based
Vision (June 1995).

[83] Mutch, Jim, and Lowe, David G. Multiclass object recognition with sparse,
localized features. In Proc. Conf. on Computer Vision and Pattern Recognition
(2006), pp. 11–18.

[84] Nagy, G., and G. Shelton, Jr. Self-corrective character recognition system. IEEE
Transactions on Information Theory 12, 2 (April 1966), 215–222.

[85] Nagy, G., Seth, S., and Einspahr, K. Decoding substitution ciphers by means
of word matching with application to OCR. IEEE Transactions on Pattern
Analysis and Machine Intelligence 9, 5 (1987), 710–715.

[86] Nagy, George. Twenty years of document image analysis in PAMI. IEEE
Transactions on Pattern Analysis and Machine Intelligence 22, 1 (2000), 38–
62.

[87] Ohya, Jun, Shio, Akio, and Akamatsu, Shigeru. Recognizing characters in scene
images. IEEE Transactions on Pattern Analysis and Machine Intelligence 16,
2 (1994), 214–220.

[88] Ozcanli, Ozge C., Tamrakar, Amir, and Kimia, Benjamin B. Augmenting shape
with appearance in vehicle category recognition. In Proc. Conf. on Computer
Vision and Pattern Recognition (2006), vol. 1, pp. 935–942.

140



[89] Pal, Chris, Sutton, Charles, and McCallum, Andrew. Sparse forward-backward
using minimum divergence beams for fast training of conditional random fields.
In Proc. Intl. Conf. on Acoustics, Speech, and Signal Processing (2006), vol. 5,
pp. 581–584.

[90] Park, Jaehwa, Govindaraju, Venu, and Srihari, Sargur N. Efficient word seg-
mentation driven by unconstrained handwritten phrase recognition. In Proc.
Intl. Conf. on Document Analysis and Recognition (1999), pp. 605–608.

[91] Perkins, Simon, Lacker, Kevin, and Theiler, James. Grafting: fast, incremental
feature selection by gradient descent in function space. Journal of Machine
Learning Research 3 (2003), 1333–1356.

[92] Petkov, N., and Kruizinga, P. Computational model of visual neurons spe-
cialised in the detection of period and aperiodic oriented visual stimuli: bar
and grating cells. Biological Cybernetics 76 (1997), 83–96.

[93] Portilla, Javier, and Simoncelli, Eero P. A parametric texture model based on
joint statistics of complex wavelet coefficients. International Journal of Com-
puter Vision 40, 1 (2000), 49–71.

[94] Qi, Yuan, Szummer, Martin, and Minka, Thomas P. Bayesian conditional ran-
dom fields. In Proc. Intl. Workshop on Artificial Intelligence and Statistics
(2005).

[95] Quattoni, Ariadna, Collins, Michael, and Darrel, Trevor. Conditional random
fields for object recognition. In Advances in Neural Information Processing
Systems (NIPS) (2005), vol. 17.

[96] Rath, T.M., and Manmatha, R. Word spotting for historical documents. Inter-
national Journal on Document Analysis and Recognition 9, 2-4 (2007), 139–152.

[97] Rayner, Keith, and Pollatsek, Alexander. The Psychology of Reading. Prentice-
Hall, Englewood Cliffs, NJ, 1989.

[98] Rehling, John A. Letter Spirit (Part Two): Modeling Creativity in a Visual
Domain. PhD thesis, Indiana University, July 2001.

[99] Rice, S., Nagy, G., and Nartker, T. Optical Character Recognition: An Illus-
trated Guide to the Frontier. Kluwer Academic Publishers, 1999.

[100] Riseman, E. M., and Hanson, A.R. A contextual postprocessing system for
error correction using binary n-grams. IEEE Transactions on Computers C-23
(May 1974), 480–493.

[101] Sarawagi, Sunita, and Cohen, William W. Semi-Markov conditional random
fields for information extraction. In Advances in Neural Information Processing
Systems (NIPS) (Cambridge, MA, 2005), Lawrence K. Saul, Yair Weiss, and
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