
Counting the Corner Cases: Revisiting Robust
Reading Challenge Data Sets, Evaluation

Protocols, and Metrics

Jerod Weinman1[0000−0002−2247−8174], Amelia Gómez Grabowska2, and
Dimosthenis Karatzas2,3[0000−0001−8762−4454]

1 Grinnell College, Grinnell, Iowa, USA
jerod@acm.org

2 Universitat Autònoma de Barcelona
3 Computer Vision Center, Barcelona, Spain

Abstract. For two decades, robust reading challenges (RRCs) have
driven and measured progress of text recognition systems in new and
difficult domains. Such standardized benchmarks benefit the field by al-
lowing participants and observers to systematically track steady perfor-
mance improvements as interest in the problem continues to grow. To
better understand their impacts and create opportunities for further im-
provements, this work empirically analyzes three important aspects of
several challenges from the last decade: data sets, evaluation protocols,
and competition metrics. First, we explore implications of certain anno-
tation protocols. Second, we identify limitations in existing evaluation
protocols that cause even the ground truth annotations to receive less
than perfect scores. To remedy this, we propose evaluation protocol up-
dates that boost both recall and precision. Accounting for these corner
cases causes almost no changes to current rankings; however, such cases
may become more prominent and important to consider as challenges
focus on increasingly complex reading tasks. Finally, inspired by the re-
cent HierText challenge’s use of Panoptic Quality (PQ), we explore the
impact of this simple, parameter-free tightness-aware metric on six prior
challenges, and we propose a new variant—Panoptic Character Quality
(PCQ)—for simultaneously measuring character-level accuracy and word
detection tightness. We find PQ-based metrics have a greater re-ranking
impact on detection-only tasks, but predict end-to-end rankings slightly
better than F -score. In sum, our empirical analysis and associated code
should allow future challenge designers to make better-informed choices.
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1 Introduction

Since 2003, ICDAR has regularly hosted robust reading competitions “to estab-
lish some common benchmark datasets, and gain a clear understanding of the
current state of the art” [25, p. 1]. The early competitions focused primarily
on scene text detection and cropped word recognition. Challenges standardizing
end-to-end reading tasks appeared in 2015 and continue to attract interest [13].

https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
https://www.springernature.com/gp/open-research/policies/accepted-manuscript-terms
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Other competitions with increasingly specific or more challenging tasks have fol-
lowed [11,29,32,12,36,34,38,4,10,24,20]. The online portal hosting many of these
challenges has evaluated over 90,000 submissions since 2011, indicating the broad
impact of this framework over the years [3]. Whereas many performance chal-
lenges remain to be addressed in the coming decade, we believe it is a good time
to take stock of the frameworks, so that future competitions can continue to
provide meaningful insights about progress in the field of robust reading.

This work carefully examines several aspects of the challenge pipeline, from
the data sets and annotations themselves to the evaluation protocols that lay
the groundwork for assessment. In addition, we explore how a recent family
of metrics may broaden understanding of system performance. Although the
overall impacts of the findings might be thought of as relatively small for prior
challenges, we conclude that a variety of special cases—amounting to hundreds in
most data sets—remain important to consider and could increase in importance
as new challenges are created to drive progress.

The remainder of the work is organized as follows. In Section 2, we elaborate
on the history, tasks, evaluations, and connections among the several families of
robust reading challenges. Section 3 describes the data used in the study and
the overarching methodology of the analyses to follow, while Section 4 begins to
examine the competition data sets in ways that motivate several questions about
the evaluation protocol addressed in Section 5. Section 6 completes the pipeline
by exploring a family of metrics that unify recognition and segmentation quality
at both the word and character level.

2 Background and Related Work

Organized benchmark analyses of well-zoned page reading OCR systems predate
robust reading challenges [30,31]. However, due to the relative sparsity of words
in scenes (compared to pages) and the difficulty of defining analogous “zones,”
it is unsurprising that evaluations for robust reading systems share many traits
with object detection, segmentation, and recognition benchmarks.

Due to the nature of the task, we can understand a distinction between two
stages of the performance measurement. First, the predicted detections must
somehow be put in correspondence with the ground truth. Depending on the
assumptions or goals of the system, these correspondences may be one-to-one,
many-to-one, and/or one-to-many. We call this first stage the evaluation protocol.
With the correspondences in place, their quality may subsequently be measured
by some metric(s) such accuracy, precision, recall, etc.

2.1 Evaluation Protocols

Lucas et al. [25] defined an evaluation protocol for end-to-end systems, as well as
the initial detection stage. The RRC protocols have evolved somewhat over time,
but three key elements have ossified: greedy correspondence search, cascaded
(sequential) assessment of detection and recognition, and the handling of “don’t
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care” regions to be ignored in the evaluation. In following, we describe how each
element has mutually evolved in both object detection and the RRCs.

Correspondence Lucas et al. [25] proposed “soft” versions of precision and
recall, which measured the average best match score between a detection and
the set of ground truth rectangles (for soft precision) and between a ground
truth rectangle and the set of detections (for soft recall). The match score was
defined as “the area of intersection divided by the area of the minimum bounding
box containing both rectangles” [25, p. 3], similar to the intersection-over-union
(IoU) criterion (or Jaccard index) used in most systems today. This procedure
somewhat blurs the line between correspondence and metric. Because there were
no entries in the end-to-end contest (and 2005 was detection-only [26]), the
stated evaluation protocol—“the rectangles must have a match score...of greater
than 0.5, and the word text must match exactly” (p. 4)—remains somewhat
ambiguous because no explicit process for matching rectangles was stated.

Alternatively, by 2005 the Pascal Visual Object Challenge (VOC) [8] explic-
itly matched object rectangles first, then determined how or whether the match
was to be assessed (i.e., depending on whether it was a “difficult” ground truth
example or had already been matched). Only afterward was the set of corre-
sponding rectangles judged by some metric. Because the average precision mea-
sure was used, rectangles were one-to-one paired by a greedy algorithm in which
the most confidently scored detections are matched to ground truth rectangles
first [9], a strategy shared by the COCO object detection challenge [21,6].

Later RRCs adopted similar matching strategies; i.e., fully greedy accepts
satisfying matches as they are found for each image, as shown below.

Listing 1. Fully greedy annotation/detection correspondence matching.

for g in G: # Unordered ground truth items
for d in D: # Unordered detections

if unmatched(g) and unmatched(d) and # matchable?
not ignore(g) and not ignore(d):

if IoU(g,d) > threshold: # geometric criterion
match(g,d)

In the ground truth greedy variant, the best detection is chosen for each ground
truth item, with the inner loop modified to ensure the corresponding detec-
tion for each g ∈ G is d̂ (g) , arg maxd∈D IoU(g, d) if it satisfies the minimum
IoU threshold. A symmetric greedy variant adds the further constraint that all
matches

(
g, d̂ (g)

)
also have g = arg maxg′∈G IoU(g′, d̂ (g)).

This fully greedy strategy was sensibly sufficient for early RRC detection
tasks where metrics were based purely on counts, rather than quality, and few
valid regions overlapped. Satisfying correspondences were essentially optimal.
Subsequent strategies choosing maximizing matches suggest a shift toward an
implicit optimization problem. In this work, we fully formalize this optimization
and measure the detrimental impact of such greedy approximations.
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Sequential Assessment In end-to-end challenges, the text recognition eval-
uation has become a second stage in a cascaded, sequential process, with geo-
metric verification established first, as for detection. That is, in challenges mea-
suring word-level accuracy, correspondences established by geometric criteria
(i.e., IoU > 0.5) are irrevocably fixed, as in Listing 1; word accuracy is only
subsequently assessed inside the last if conditional after the match. If valid an-
notations happen to overlap (see Figure 1), meeting the geometric criterion, a
mismatch among the proper corresponding detections and the underlying ground
truth may result in an inaccurate assessment. Although the geometries align, the
texts may not, causing severe scoring penalties (observed by Baek et al. [1]). This
work measures the impact of the cascaded evaluation and alternatives that are
both consistent with the original protocol laid out by Simon et al. as well as com-
mensurate with the formal maximization framework we introduce in Section 5.

Handling “Don’t Cares” Often there exist identifiable image regions contain-
ing text that is to be omitted from the evaluation, i.e., because it is illegible, in
a non-target language, etc. In the VOC [8], a detection was counted as either a
true positive or false positive once the IoU overlap criterion was met, but only
if the corresponding ground truth rectangle was not considered difficult (that is,
it was not a “don’t care”) [9]. For COCO, detections were allowed to correspond
to “don’t care” annotations (and subsequently discounted from the metrics), but
only after attempts were made to find a match with a not “don’t care” annotation
failed [6]. In the more recent Panoptic Segmentation (PS) task [16], which uni-
fies semantic and instance segmentation, predictions are not matched to “don’t
care” regions (unlabeled “void” regions or difficult to separately label groups of
instances), but any unmatched regions that sufficiently overlap “don’t care” re-
gions do not count as false positives. Importantly, PS is distinct in that regions
are mutually disjoint by definition.

As can be seen in Listing 1, the RRCs have taken a different approach by
identifying ignorable detections beforehand, similarly based on their overlap with
“don’t care” regions. Any such detections will not be matched, even if they are
viable match candidates with valid annotations. Thus, as in PS, although such
detections will not be counted as false positives, unlike VOC or COCO neither
can they become true positives. We likewise investigate the impact of this pre-
filtering detection protocol in comparison to alternatives like COCO’s or PS’s.

Table 1 summarizes the RRCs and their matching strategies. These chal-
lenges are firmly rooted in the word : 1) Ground truth annotations are made
at the “word” level; in scripts without space-separated words, such as Chinese,
the layout geometry (i.e., “lines”) largely determines the annotation granular-
ity [28,5,34]. 2) Evaluation protocols assume/enforce a one-to-one matching be-
tween annotation regions and detections. 3) Metrics largely assess how well meth-
ods can recover (detect) and recognize these words. Recent work has examined
the limitations of RRC protocols, particularly with respect to the granularity of
the one-to-one requirement [35,2,7,18,19,1]. Our goal is not to counter these
important developments in evaluations, but to clarify that—within the
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space of these assumptions—applying greater nuance to the approach
increases evaluation fairness and completeness. Some ideas presented here
may also transfer to other evaluation frameworks.

2.2 Metrics

As suggested earlier, the prominent metrics for evaluating text detection and
end-to-end reading tasks have been derived from early use in information re-
trieval and later use in object detection. Once the correspondence is completed,
matched detections can be considered to belong to the set of true positives, while
unmatched detections (ground truths, resp.) belong to false positives (false neg-
atives, resp.). Precision and recall rates capture these proportions, and their
harmonic mean, the F -score, combines them.

P ,
|TP|

|TP|+ |FP|
R ,

|TP|
|TP|+ |FN|

F ,
2PR

P +R

For detection tasks, the set of true positives is a subset satisfying geometric
overlap constraints,

TPDet ⊆ {(g, d) ∈ G×D | IoU (g, d) > τ} , (1)

where τ is the minimum IoU match threshold, typically 0.5. Recognition tasks
add a textual boolean predicateM (g, d) to constrain to acceptable string matches,

TPRec ⊆ {(g, d) ∈ G×D | IoU (g, d) > τ ∧M (g, d)} . (2)

In this context, the F -score measures word-level performance. The match set TP
is found for each image; however, in calculating the final metrics, the values |TP|,
|FP|, and |FN| are typically totals accumulated for an entire set of benchmark
images.

Edit distance as a measure of total character-level error has a long history
in OCR [31], and the normalized Levenshtein edit distance (ED) between two
(short) strings r and s,

NED (r, s) , ED (r, s) /max (|r| , |s|) , (3)

was introduced to cropped word tasks [12,38], precursors of end-to-end chal-
lenges. For end-to-end detection and recognition tasks [34,5], the average com-
plementary normalized edit distance (or “1−NED”) is given by

CNED ,
|TP| −

∑
(g,d)∈TP NED (g, d)

|TP|+ |FN|+ |FP|
. (4)

The NED is taken to be 1 for a false negative (no corresponding detection) or a
false positive (no corresponding ground truth), so that these errors are penalized.

Kirillov et al. [16] introduced the Panoptic Quality (PQ) measure, which
addressed several of concerns raised in Wolf and Jolion [35] by clearly disen-
tangling quality and quantity in an intuitive and parameter-free way. The value
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PQ ∈ [0, 1] combines a measure of segmentation quality T (for tightnesss)—the
average IoU among true positive regions—with the well-established F -score as
the measure of detection quality:

PQ , F × T = F × 1

|TP|
∑

(g,d)∈TP

IoU (g, d) . (5)

Long et al.adopted PQ for the HierText challenge [23,24]. In later sections, we
retrospectively apply the PQ metric to other RRC submissions, which have not
traditionally been scored for segmentation quality.

The PQ metric is similar in spirit to the contemporaneous tightness-aware
metrics of Liu et al. [22], which—like Lucas et al. [25]—proposes an average form
of recall and precision; in this case modulating IoU values of each correspondence
with an inverse recall or precision with respect to box pixel areas.

The existing PQ for end-to-end tasks is a word-level metric. To capture the
same sort of character-level performance measured by CNED, we introduce an-
other factor to PQ: the average 1 − NED value over true positives (much like
tightness is average IoU). We combine this with PQ to define the Panoptic Char-
acter Quality PCQ ∈ [0, 1]:

PCQ , F × T × C = PQ× 1

|TP|
∑

(g,d)∈TP

(1−NED (g, d)) . (6)

An un-normalized geometric mean like PQ, the PCQ intuitively combines three
elements of interest—localization accuracy (tightness) T , detection quality F ,
and character -level recognition accuracy C—into a single measure.

The PCQ metric and the updated evaluation protocol outlined in Section 5
appear in the MapText RRC [20]. This broader study examines their retrospec-
tive impacts on prior RRCs. The supplementary material shows the remarkable
stability of panoptic measures with respect to the IoU threshold, which can be
reduced to τ = 0 for end-to-end tasks, making PQ effectively parameter free.

3 Data and Methodology

The next section offers an empirical analysis of the competition data sets, their
evaluation protocols, and metrics. Here we describe the data and basic method-
ology supporting these experiments.

The seven challenges with twelve tasks total (five detection and seven end-
to-end) are all hosted at the RRC site [3] (see Table 1). Evaluation scripts
for FST15, IST15, MLT19, and HierText22 are public, but the others (ArT19,
LSVT19, and OOV22) remain privately held by the organizers. With the ex-
ception of HierText22, all the evaluations are derivatives of the same original
protocol scripts for the RRC site. Although HierText22 followed the same pro-
tocols outlined in Section 2.1, the implementation is entirely independent.

The train data splits (annotations and images) and test split images are
publicly available, but the ground truth test split annotations remain privately
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Table 1. Robust reading challenges examined in this study. See text for details.

Challenge Year Det E2E Matching Metric

Focused Scene Text (FST) [13] 2015 X Fully greedy F -score
Incidental Scene Text (IST) [13] 2015 X X Fully greedy F -score
Multi-lingual Scene Text (MLT) [28] 2019 X X Fully greedy F -score
Arbitrary-Shaped Text (ArT) [5] 2019 X X GT greedy CNED
Large-scale Street View Text (LSVT) [34] 2019 X X GT greedy CNED
Out of Vocabulary (OOV) [10] 2022 X Fully greedy F -score†

Hierarchical Text (HeirText) [24] 2023 X X Symmetric greedy PQ
† Note: OOV uses an average F -score between in- and out-of-vocabulary sets of words;
for comparisons, our analysis focuses on the standard F -score over all words.

held by the organizers. Non-public scripts and data have been made available to
us strictly for the purpose of supporting this study.

Users who submit results for evaluation to the RRC server may keep their
results private or share them publicly, which allows their ranking and results to
appear on the site along with a brief description and optional links to supporting
papers or code. Nearly 2,000 methods over the twenty-six competitions have
been shared; we downloaded the 458 publicly accessible submissions (as of 11
December 2023) for the twelve tasks examined in Sections 5 and 6.

Each competition uses a slightly different format for its ground truth and
submission files. Because the overall task is basically shared among these com-
petitions, we wrote converters that exported the ground truth file for each com-
petition to a common format; we similarly converted each submission for all the
tasks to a similar common format.

All the analyses proceed through a single evaluation script that supports
the protocol and metric variations described in the next sections. For a given
protocol variant, all challenges are thus processed in a unified fashion (with the
exception of hooks for task-specific string comparisons).4

4 Competition Data Sets

Table 1 summarizes protocols and metrics for the various RRCs. Motivated by
the protocols described in Section 2.1, this section investigates properties of the
annotations for various scene text data sets, focusing on two primary questions:
Q1) How many valid (not “don’t care”) ground truth annotations overlap? If
greedy matching simply requires meeting an IoU threshold, the “best” or largest
set of correspondences may not be found. Q2) How many valid ground truth
words overlap with “don’t care” regions? If such cases are excluded as correspon-
dence candidates, potentially valid words will be ignored, causing an unrecover-
able drop in recall. Figure 1 illustrates meaningful cases for Q1.
4 Code and data: https://github.com/weinman/rrc-evaluation and DOI:11084/34450.

http://rrc.cvc.uab.es/?ch=2
http://rrc.cvc.uab.es/?ch=4
http://rrc.cvc.uab.es/?ch=15
http://rrc.cvc.uab.es/?ch=14
http://rrc.cvc.uab.es/?ch=16
http://rrc.cvc.uab.es/?ch=19
http://rrc.cvc.uab.es/?ch=18
https://github.com/weinman/rrc-evaluation
https://hdl.handle.net/11084/34450
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Fig. 1. Overlapping word annotations with IoU > 0.5 in robust reading training data
occur for a variety of reasons including design, typography, and incidental.

Table 2. Training data statistics. “Ignores” is the total number of regions marked as
a “don’t care” for the evaluation. “Ignored Valids” are the valid words that meet the
overlap criterion with a “don’t care” region. “Matching Valids” are the valid words that
can match with a different valid word (their IoU > 0.5).

Train Set Words Ignores Ignored Valids Matching Valids

FST15 848 698 3 0.40% 2 0.14%
IST15 11,886 7,418 3 0.07% 18 0.15%
COCOText17 [11] 145,862 58,742 1,382 1.59% 4,848 3.32%
MLT17 [29] 86,632 17,814 62 0.09% 74 0.09%
MLT19 111,998 22,562 71 0.08% 78 0.07%
ArT19 62,990 12,899 132 0.26% 108 0.17%
LSVT19 382,606 138,969 262 0.11% 220 0.06%
TextOCR [33] 1,052,354 0 0 0.00% 884 0.08%
IntelOCR [17] 2,353,302 0 0 0.00% 92,258 3.92%
HierText 1,014,142 151,565 582 0.07% 82 0.01%

Table 2 quantitatively addresses these questions. In particular, the “Matching
Valids” columns indicate the potential impact of greedy matching (Q1), while
the “Ignored Valids” columns indicate the impact of pre-filtering detections to be
ignored in evaluation protocols (Q2). While the proportions may yet be small, the
raw numbers of such cases have increased as data sets have scaled. Note that the
OOV [10] data set is the union of all listed except MLT17, ArT19, and LSVT19.
We find that many “matching valids” appear to be due to double annotations,
particularly in COCOText (distinct rectangles) and IntelOCR (duplicates).

The next section carefully quantifies the extent of these issues by verifying a
stark reality: using the ground truth annotations as a submission fails to achieve a
perfect score using the existing evaluation protocols. Greedy, sequential match-
ing finds a satisfying but incomplete set of correspondences, and pre-filtering
detections causes false negatives.

Separately, most RRC annotation protocols allow “don’t care” regions to con-
tain multiple words, or even multiple lines of text. In some circumstances it is
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difficult or impossible to annotate “don’t care” regions at the word level, which
then necessitates a many-to-one matching scheme when handling predictions
that are to be ignored in the evaluation. Among the public submissions to these
challenges, a significant number (5–20%) of ground truth “don’t care” elements
have multiple predictions overlapping them. (See the supplementary material
for quantitative and qualitative analysis of the extent and impact of many-to-
one matching.) In particular, forcing a one-to-one matching generally tends to
negatively impact the precision of only the systems with highest recall. Ordinar-
ily, the many extra unmatched predictions overlapping “don’t cares” would not
count as false positives that reduce precision. However, in competition contexts
where it is possible to give word-level “don’t care” annotations (e.g., multilin-
gual [28], printed versus handwritten [11], or words truncated by cropping [20]),
requiring one-to-one matching with word-level “don’t cares” may be preferable.
Such protocols would avoid skewing the precision metric by failing to penalize
multiple predictions that overlap such regions.

5 Evaluation Protocols

In this section we propose remedies for the issues and concerns with the evalua-
tion protocols detailed above. Specifically, by framing the correspondence stage
as an instance of the linear sum assignment problem, we can easily give a com-
plete, optimal metric value for a given set of predictions.

5.1 Greedy versus Optimal Correspondence Matching

As described in Section 2.1, RRC challenges use matching strategies with varying
levels of greediness. Section 4 showed that many benchmark data sets have quite
a number of annotations with IoU overlaps above the commonly-used match
threshold. As a result, the standard evaluation protocol fails to give perfect
scores to the ground truth (see Table 3).

With a fixed set of detectionsD and ground truth annotations G, maximizing
the number of true positives will optimize the F score. To give the best possible
evaluation, the protocol should therefore find a correspondence that maximizes
the number of matches for each image.

Given a score matrix Ψ ∈ R|G|×|D| with entries ψgd, bipartite linear sum
assignment finds the binary-valued matrix X ∈ Z|G|×|D|2 with entries xgd maxi-
mizing the sum ∑

(g,d)∈G×D

ψgdxgd (7)

with (bipartite) constraints
∑

g∈G xgd ≤ 1 and
∑

d∈D xgd ≤ 1 for all d ∈ D
and g ∈ G, respectively. This maximization problem has many polynomial time
algorithms [27] and runs quickly in modern software packages such as SciPy.

To maximize the matches for detection tasks, we use the match score

ψ (g, d) =

{
+1 if IoU (g, d) > τ

−1 otherwise,
(8)
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taking TPDet = {(g, d) | xgd = 1}. Setting the last case to some negative value,
rather than zero, prevents the optimizer from setting xgd = 1 without penalty,
ensuring the matches of X satisfy the geometric constraint.

As described in Section 2.1, current evaluation protocols for end-to-end tasks
first establish correspondences and then filter these to the final set of true
positives by requiring candidates’ transcriptions match. Thus, we would take
TPRec = {(g, d) | xgd = 1 ∧M (g, d)} where M is the string match predicate.
Note that in this case TPRec ⊆ TPDet.

5.2 Sequential versus Joint Matching for End-to-End Tasks

Section 2.1 observed that in the end-to-end task identifying candidate corre-
spondences by geometry alone may lead to sub-optimal performance evaluations.
Rather than cascade the string constraint verification, we can effortlessly include
it within the optimal framework described above so that all valid geometries are
considered. To this end, the match score function is

ψ (g, d) =

{
+1 if IoU (g, d) > τ ∧M (g, d)

−1 otherwise.
(9)

Thus, it is no longer necessary to include the match constraint in a secondary
filtering step and we may directly take TPRec = {(g, d) | xgd = 1}. As mentioned
above, geometric consistency alone with Equation (8) may not produce the best
correspondences for recognition, so in this case TPRec 6⊆ TPDet in general.

5.3 Pre- versus Post-filtering “Don’t Care” Predictions

As shown in Table 2, a small but measurable number of valid words overlap
with ignore regions. Eliminating such valid words from match candidacy causes
an inflation in false negatives. We can remedy this by following the precedent of
object recognition challenges, which only discount any such ignorable predictions
after the matching stage. Within the joint optimization framework we have

ψ (g, d) =

{
+1 if IoU (g, d) > τ ∧ V (g)

−1 otherwise,
(10)

where V indicates the ground truth annotation is valid (not a “don’t care.”) Any
unmatched detections that meet the overlap threshold with “don’t care” ground
truth regions are subsequently excluded from the false positive tally.

For end-to-end tasks with the F -score metric, we insert the match predicate
M(g, d) to the positive case of Equation (14) as we did for Equation (9).

Tasks using the CNED metric (4) do not use the string match constraint.
Importantly, we cannot maximize only the true positives, but must also minimize
total NED. To accomplish this we take

ψ (g, d) =

{
+1−NED (g, d) if IoU (g, d) > τ ∧ V (g)

−1 otherwise.
(11)
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5.4 Empirical Analysis

Here we quantitatively examine the impact of the protocols and variants pro-
posed. Table 3 reports the results of using the ground truth annotations as
prediction input to the evaluation protocol. When the input is reversed, the

Table 3. Evaluation false negatives using ground truth as prediction submissions.

ArT MLT LSVT OOV HierText
Rev. Opt. Joint Post Det E2E Det E2E Det E2E E2E Det E2E

306 306 125 135 258 258 226 28 28
X 306 306 125 141 258 258 448 28 28
X X 306 306 125 137 258 258 230 28 28
X X X - 306 - 135 - 258 226 - 28
X X 0 0 2 14 1 1 273 0 0
X X X 0 0 2 5 1 1 7 0 0
X X X X - 0 - 2 - 1 2 - 0

false negatives increase for two tasks due to the greedy matching—doubling for
OOV; changing to optimal matching nearly restores the prior performance. Post-
filtering the ignores, even with a greedy matcher, makes the biggest difference
in performance. The OOV false negative count remains stubbornly high without
the optimal matcher, which also reduces errors for the MLT E2E task. Finally,
addressing all of the issues, in the bottom row of the table, minimizes the number
of false negatives. Tellingly, columns for IST and FST (not shown) in Table 3
are all zeros, suggesting that protocol issues were not readily apparent in early
competitions and data sets. (We note that the remaining non-zeros in the bot-
tom row are due to ground truth annotations that have an un-matchable area
of zero; IoU is undefined.)

For competition entries, Figure 2 shows the changes in false negative counts
relative to the original RRC evaluation protocol. The sharp initial increase for
some E2E entries highlight the dangers of sequential constraint verification (ge-
ometry then text); systems that produce multiple predictions overlapping a
ground truth element are more likely to result in a correspondence with in-
correct text. Joint constraint processing maintains or reduces false negatives in
all cases. As expected, allowing all predictions to be match candidates further
reduces false negatives.

There is almost no change in the count of false positives among all challenges
and entries (four differ by one or two each). The mean (max, resp.) reduction in
false negatives is 65 (201) for detection tasks and 96 (817) for end-to-end. Among
all tasks, the increase in F -score is +0.034% (+0.27% max). Fully 10% of the
submissions have an F -score difference with an adjacently ranked system less
than that average. (See the supplementary material for a more detailed visual
analysis of the net positive improvements on precision, recall, and F -score.)
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Fig. 2. Changes in raw false negative count from the original protocol for public RRC
submissions. Red is competition entries; black are post-competition.

For ArT19 and LSVT19, which rank by the CNED metric, optimal processing
with the NED-based match score (11) uniformly improves entries’ CNED by an
average (max, resp.) of 0.09% (0.32%).

Importantly, we note that the only rank change resulting from these modifi-
cations is in OOV positions 10 and 11, though we reiterate the overall F -score
analyzed here was not the competition metric.

In summary, it is not enough to simply find satisfying correspondences in
general, particularly with a one-to-one matching scheme. Even non-overlapping
ground truth annotations may be close enough to allow for multiple satisfying
correspondences. Framing the correspondence task as an optimization problem
for a specific metric allows for more complete performance assessments.

6 Panoptic Metrics

With a robust evaluation protocol that addresses correspondence matching more
completely, we turn our attention to the competition metrics, which can justi-
fiably vary to emphasize different aspects of performance. In contexts where
cropped word matches are displayed as search results [15] or erased for pri-
vacy [37], it may make sense to reward the “segmentation quality”, or the tight-
ness of the match, as done by the Panoptic Quality (PQ) metric (5).

For the evaluation protocol to find correspondences, simply maximizing true
positives (as for F ) will not optimize PQ, which also considers the IoU-based
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Fig. 3. Traditional F -score versus tightness T for RRC submissions. Color is PQ.

tightness. To improve the PQ, we use the score

ψ (g, d) =

{
IoU (g, d) if IoU (g, d) > τ ∧ V (g)

−1 otherwise,
(12)

which maximizes the total IoU among matches for tightness T , but which also
retains strong true positive scores for F due to a preference for including as
many matches as possible, up to the bipartite constraint. As before, we add the
constraint M (g, d) to the positive case for end-to-end tasks.

Whereas PCQ contains sums among factors (as opposed to being a sum of
products), there is no clear way to use the linear sum assignment model (7) to
directly optimize correspondences for the PCQ metric. However, since IoU and
1 − NED—both in [0, 1]—are each important terms among the sums, it seems
natural to use their product (also in [0, 1]) in the correspondence match function:

ψ (g, d) =

{
IoU (g, d) (1−NED (g, d)) if IoU (g, d) > τ ∧ V (g)

−1 otherwise.
(13)

Using Equation (12) with the fully optimal protocol uniformly raises entries’
PQ in all tasks by an average (max, resp.) of 0.04% (0.75%) over the original
protocols; using IoU in the match score contributes to improve PQ uniformly



14 J. Weinman et al.

F PQ

0
20
40
60
80

100
120
140

Ra
nk

IST Det

F PQ

0
6

12
18
24
30
36
42
48

MLT Det

F PQ

0
8

16
24
32
40
48
56

ArT Det

F PQ

0
4
8

12
16
20
24
28

LSVT Det

F PQ

0
3
6
9

12
15
18
21
24
27

HierText Det

CNED PCQ

0
3
6
9

12
15
18
21

MLT E2E

F PQ

2
4
6
8

10
12
14
16
18

Ra
nk

FST E2E

F PQ

0
4
8

12
16
20
24
28

IST E2E

F PQ

2
4
6
8

10
12
14
16
18

ArT E2E

F PQ

0
4
8

12
16
20
24
28

OOV E2E

F PQ

2
4
6
8

10
12
14

HierText E2E

CNED PCQ

2
4
6
8

10
12
14

LSVT E2E

Fig. 4. Rank changes from F -score to PQ metric or CNED to PCQ (at right, for MLT
and LSVT). Red is competition entries; black are post-competition.

by 0.01% (0.18%) over the binary match score (14). The proposed IoU·NED
match score (13) yields an average (max, resp.) improvement in PCQ of 0.07%
(0.88%) compared to the original protocols, 0.01% (0.12%) over optimal F -score
matching (14), 0.003% (0.08%) over the NED-only matcher (11), and 0.01%
(0.10%) over the IoU-only matcher (12).

More interesting than the effects of protocol on metric values, perhaps, is the
effect of metrics on rankings. Before HierText, methods were not scored on any
tightness-sensitive metric since FST13 [14] used DetEval [35] for detection. Fig-
ure 3 demonstrates that for roughly the same F -score, there can be a wide range
of tightness values T . Intuitively, we might prefer higher tightness when all else
is equal. Tightness and F -score are only mildly correlated, even for end-to-end
tasks where one might expect higher tightness to improve recognition. While bet-
ter tightness should reduce reliance on robustness, we find the robustness of the
recognition modules varies somewhat independently of tightness among these en-
tries. However, the Pearson correlations are higher than previously reported [24]:
ρ (TDet, FDet) = 0.5307, ρ (TDet, FE2E) = 0.4661, and ρ (TE2E, FE2E) = 0.2895.

Figure S12 illustrates the ranking changes for entries in the various compe-
titions. (The supplemental material provides concrete examples.) Because the
text match constraint strongly influences results, ranks for E2E competitions
tend to be more stable. As can be seen in Figure 3, the F -score leaders for MLT
and LSVT have a wide spread in tightness T , which results in a shuffling when
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Panoptic Measures are used, whether PQ or PCQ. HeirText already reported
and ranked with PQ; Figure S12 confirms the rankings would have been quite
different with F -score, where the highest F values differ in T by around 10%.

The PQ metric is also a slightly better predictor of end-to-end performance
than F -score, as evidenced by the Spearman rank correlations: rs (FDet, FE2E) =
0.8594 while rs (PQDet,PQE2E) = 0.8874.

7 Conclusions

The data sets for robust reading challenges have grown in scale and complexity
over time. Cases such as overlapping words that must be independently detected
and recognized may once have been an oddity, but they now form a substantial
presence in the data. Newer challenges might even put greater focus on such
cases. The changes we have proposed here do not fundamentally alter the extant
evaluation protocols; instead, they aim to put each entry in its best light. Indeed,
we have shown that each change—optimizing the correspondences, satisfying
geometric and text constraints jointly (not sequentially), and filtering predictions
that overlap “don’t care” ground truth regions after correspondence matching—
are all necessary for even the ground truth to achieve a perfect score.

Our goal is not to cast doubt on prior results—virtually no ranks on the
competition metrics are altered. Instead, we have reformulated the evaluation
protocol to be more fair to entries and allow for new ways of thinking about
solving the correspondence problem endemic to such competitions.

In addition, we have applied tightness-aware metrics to prior challenge sub-
missions and found wide differences among otherwise similarly-performing sys-
tems. With optimization, we conclude the metrics to be stable for end-to-end
tasks, allowing the IoU threshold to be eliminated (see supplementary material).

Overall, a primary weakness of the underlying formulation remains granu-
larity; when one-to-one matching undergirds protocols, nearly perfect and dis-
astrously imperfect detections or recognitions may both end up with similar
scores. However, the strength may be its simplicity and intuitiveness. The for-
mulation requires no extra parameters and asks systems to produce the output
of direct end-use: tightly framed indexed words or even phrases. With ever more
robust and accurate models, it may become increasingly appropriate to focus on
word-level evaluations to the exclusion of the character level.

We hope that designers of future challenges in this family will consider adopt-
ing participant-friendly protocols or might be further inspired by the general
optimization framework and the link between final metric and correspondence
matching it exposes.
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Supplementary Material

Section A contains additional visualizations of the effects of protocol changes
proposed in the main paper. Section B provides examples that illustrate the
changes in rank with the panoptic metrics. Section C explores the effects of
changing the evaluation protocol to allow only one-to-one matching with “don’t
care” regions. Finally, Section D demonstrates the stability of metrics (partic-
ularly end-to-end PQ) with respect to the IoU threshold under the proposed
optimization framework.

A Evaluation Protocol

This section contains additional visualizations of the effects of protocol changes
described in the main paper.

Figure S1 plots a subset of the data from Figure 2 in the main paper; omit-
ting the sequential variant more visibly demonstrates the effect of joint optimal
processing relative to the original protocol.
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Fig. S1. Changes in raw false negative count from the original protocol for public RRC
submissions. Red is competition entries; black are post-competition.

Figures S2 and S3 show the net difference for each submission with all pro-
posed protocol changes: i) correspondences optimizing true positives, ii) jointly
(rather than sequentially) satisfying geometric and textual constraints for end-
to-end tasks, and iii) matching all predictions before filtering out remaining un-
matched predictions that overlap with “don’t care” regions. From these changes
we calculate the improvements in the main paper—∆F -score average (max,
resp.) +0.034% (+0.27% max).
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Fig. S3. Net changes to F -score for submissions with all protocol changes described in
the main paper. Red indicates competition entries; others are later submissions.

B Panoptic Metric

Figure S4 provides indicative example detections from the Focused Scene Text
end-to-end task (where submissions and test ground truth are both publicly
available). These examples illustrate how otherwise similarly performing systems
can diverge in rank once tightness becomes a factor in the metric. The systems
with rank seven (blue) and eight (red) end up at ranks thirteen and three after
accounting for tightness; the blue boxes are visibly poorer than the red boxes.
Table S1 provides the accompanying metric values underlying the rank changes.

Table S1. Overall performance statistics (on entire FST E2E data set) accompanying
the systems in Figure S4.

Rank (F ) F T PQ Rank (PQ)

7 84.2041 70.6937 59.5270 13
2 85.7778 81.1673 69.6235 5
4 84.6501 88.7825 75.1545 2
8 83.8895 85.7028 71.8957 3

C Handling “Don’t Cares”

The annotation protocol of most RRCs allows “don’t care” regions to contain
multiple words or even multiple lines of text. The evaluation protocol therefore
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Fig. S4. Cropped example correct detections from FST E2E illustrating differences in
tightness (IoU) that cause re-ranking under the PQ metric.

allows many-to-one matching of predicted detections against such “don’t care re-
gions.” This section explores potential effects of changing the evaluation protocol
to allow only one-to-one matching with “don’t care” regions.

First, Table S2 quantifies the extent of many-to-one matchings for “don’t
care” regions among all public submissions to the RRCs.

Table S2. Relative frequency (%) of number of matches to “ignore” regions, among
those with any matches at all. (Accumulations over all public challenge submissions.)

Challenge Det E2E
Two More Two More

FST15 – – 2.49 0.00
IST15 4.54 1.03 4.26 0.84
ArT19 6.77 3.35 6.83 3.45
MLT19 9.88 5.04 9.65 4.53
LSVT19 6.08 3.35 4.17 1.15
OOV22 – – 12.87 8.14
HierText23 6.77 4.14 8.18 5.39
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To accommodate the exploration of one-to-one matching with “don’t care”
regions, we alter the match score slightly:

ψ (g, d) =


+1 if IoU (g, d) > τ ∧ V (g)

ε if IoU (g, d) > τ ∧ ¬V (g)

−1 otherwise,
(14)

where V indicates the ground truth annotation is valid (not a “don’t care.”)
In this framework, using a small positive value ε for matches to “don’t care”
annotations allows such correspondences, while leaving a preference for matches
with valid words, which improve performance metrics. Such one-to-one matches
are discounted (neither true positives, false positives, nor false negatives), but
remaining unmatched predictions are counted as false positives, even if they
overlap with a “don’t care” region.

Figures S5 and S6 illustrate the impact of changing the evaluation protocol
to allow only one-to-one matches with “don’t care” regions of the ground truth.
Detection tasks are more heavily impacted than end-to-end tasks. The impacts
are not uniformly distributed; the primary paper observes that high-recall sub-
missions have the most degraded precision values. This is likely because under
current protocols, such systems can be rewarded with the potential for an im-
proved recall without harm to precision since most of the additional predicted
detections will be filtered by the a priori “don’t care” filtering.

D IoU Match Threshold τ and Metric Stability

As in the established competition protocols, the main paper utilizes an IoU
match threshold of τ = 0.5, but evaluations have used other values (e.g., τ = 0.75
for COCOText).

This section examines the stability of the various metrics across different
values 0 ≤ τ < 1.

The main paper introduces the optimization framework for the matching
stage of the evaluation protocol. That framework allows us to find the best
overall correspondence, as measured by total IoU. Because the panoptic quality
(PQ) metrics also incorporate the IoU tightness of the matches, it may make
sense to lower the allowable threshold for a match, even down to zero.

Requiring only a positive IoU (τ = 0) allows PQ-based metrics to become
essentially parameter-free with an increasing penalty for decreasing tightness
quality. For detection tasks, exceptionally low values of τ may not have exper-
imental validity, but end-to-end tasks requiring matching strings still produce
strongly grounded correspondences.

F -score can only increase as the match threshold τ decreases, because it al-
lows more detections to be considered true positives (thus reducing both false
positives and false negatives). Similarly, the average tightness T decreases as
more matches with lower IoU are included. Whether higher F or lower T domi-
nates in PQ depends on “where” (τ value) any increase in recall occurs.
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Figures in the following subsections demonstrate the effect of altering the
IoU match threshold on F-score, tightness T , and PQ for both detection and
end-to-end tasks.

D.1 Detection Tasks

Several prior works have demonstrated problems with IoU-based one-to-one
matching for text detection evaluation (cf. Section 2.1 of the main paper). Spe-
cific downstream tasks are likely the best arbiter of any evaluation protocol’s
validity. Nevertheless, we explore the stability of the metrics under various IoU
match thresholds using the IoU-based match score function—Equation (12) in
the main paper.
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Fig. S7. Changes in F -score (top), tightness T (middle), and panoptic quality PQ
(bottom) with varying IoU match threshold τ for detection tasks. Individual submis-
sions in light gray and the average in bold blue.

Figure S7 shows that although F indeed increases while T decreases, the PQ
value is mostly stable beyond a certain point, perhaps around τ = 0.4.

In the detection task, it is not obvious whether small values of τ (say 0.1)
result in meaningful detections worthy of being called “true positives”; this will
depend on the downstream task. However, the lower tightness of such additional
matches does end up penalizing the final quality, thus balancing out any increase
in F score.



Counting the Corner Cases: Revisiting Robust Reading Challenges 27

D.2 End-to-end Tasks

Unlike for detections, even small values of τ can still produce meaningful corre-
spondences in the end-to-end task because the recognized string must also match
or have low NED. Figure S8 illustrates the metric changes with decreasing τ for
end-to-end tasks. As before, the IoU-based match score is used for the F -score,
tightness T , and panoptic quality PQ results. The PCQ results are generated
using the IoU and NED-based match function—Equation (13) in the main paper.

As suggested above, recognition modules are less likely to produce correctly
matching strings below a certain IoU. Whereas decreasing τ progressively raises
the F -score for detections, below τ = 0.4 there is very little increase and the
metrics are highly stable.

This suggests that the threshold parameter could be eliminated entirely from
a PQ-based metric, which rewards both quantity (F -score) and quality (tightness
T ) of all corresponding string matches.

Whereas the other metrics (PQ, F , and T ) remain completely stable below
a certain threshold, a slight peak may be observed for the Panoptic Character
Quality (PCQ) in the right column of Figure S8. Although additional rectangles
are included as matches, the concomitant cost to average tightness and edit
distance eventually outweigh the boost to F -score.

Figure S9 captures the total reduction in false negatives by changing the
revised protocol described in the main paper from an IoU threshold of τ = 0.5
to τ = 0.0. It indicates the absolute magnitude of the change can be quite
substantial, particularly for some submissions whose predictions have an IoU
just below the cutoff threshold. Similarly, Figure S10 demonstrates the net effect
on the normalized precision and recall metrics.

Figure S11 marks the final changes in F -score and PQ with tau changed to
0.0 from 0.5 for both detection and end-to-end tasks.

Because the recall for end-to-end tasks is only sensitive to around τ = 0.4,
it may make sense to use the parameter-free version in future competitions. To
examine the potential effects on rankings, we extend the rank bump plot from
the main paper (Figure 4) to consider not only the change in metric using the
updated protocol where τ = 0.5, but also with the additional change to τ = 0.

After the initial change to a panoptic metric, the rankings of end-to-end tasks
remain largely consistent in the parameter-free regime, indicating its stability.

Taken together, the increases of Figure S11 combined with the stability in
rankings suggest that eliminating the threshold parameter may increase valuable
metric sensitivity for end-to-end methods
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Fig. S8. Changes (left to right) in F -score, tightness T , panoptic quality PQ, and
panoptic character quality PCQ with varying IoU match threshold τ for end-to-end
tasks. Individual submissions in light gray and the average in bold blue.
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